| 注册
首页|期刊导航|西南交通大学学报|基于自适应嵌套抽样和贝叶斯理论的桥梁有限元模型修正

基于自适应嵌套抽样和贝叶斯理论的桥梁有限元模型修正

徐希堃 洪彧 许靖业 周志达 蒲黔辉 文旭光

西南交通大学学报2025,Vol.60Issue(2):503-512,10.
西南交通大学学报2025,Vol.60Issue(2):503-512,10.DOI:10.3969/j.issn.0258-2724.20230358

基于自适应嵌套抽样和贝叶斯理论的桥梁有限元模型修正

Finite Element Model Updating for Bridges Based on Adaptive Nested Sampling and Bayesian Theory

徐希堃 1洪彧 1许靖业 1周志达 1蒲黔辉 1文旭光2

作者信息

  • 1. 西南交通大学土木工程学院,四川 成都 610031
  • 2. 南宁学院广西中国-东盟综合交通国际联合重点实验室,广西 南宁 530000
  • 折叠

摘要

Abstract

In bridge health monitoring based on finite element models,Bayesian model updating techniques are commonly used to quantify the uncertainties of important parameters in the finite element models,so as to address the issue of non-uniqueness in model updating caused by measurement errors,modeling errors,computational errors,etc.To resolve the problem of low efficiency in model updating due to the large number of finite element simulations required,a Bayesian model updating method based on an adaptive nested sampling(ANS)algorithm was proposed.The method used the modal parameters to construct the probability objective function and adopted the ANS algorithm to approximate it.ANS retained the nature of nested sampling(NS),which made the samples ultimately approximate the optimal parameters by narrowing the sampling range layer by layer,and it simplified the computation process of the evidence value and the a posteriori probability density value by transforming the high-dimensional integration problem into a simple one-dimensional integration problem through layer-by-layer approximation.On this basis,the ANS algorithm could also reduce the call of the finite element model by adaptively adjusting the number of samples during the iteration process.Finally,a pedestrian truss bridge was used as a case study for Bayesian finite element model updating experiments.The results demonstrate that under the same algorithm parameter settings,the ANS algorithm reduces the number of finite element simulation calls by approximately 84%compared to the traditional NS algorithm.This leads to approximately 86%computational time savings while obtaining uncertainty updating results with equal accuracy.

关键词

有限元模型/贝叶斯模型修正/不确定性量化/嵌套抽样算法/自适应算法

Key words

Finite element model/Bayesian model updating/parameter uncertainty quantification/nested sampling algorithm/adaptive algorithm

分类

交通工程

引用本文复制引用

徐希堃,洪彧,许靖业,周志达,蒲黔辉,文旭光..基于自适应嵌套抽样和贝叶斯理论的桥梁有限元模型修正[J].西南交通大学学报,2025,60(2):503-512,10.

基金项目

广西科技计划(AA21077011) (AA21077011)

中央高校基本科研业务费专项资金(2682022CX003) (2682022CX003)

西南交通大学学报

OA北大核心

0258-2724

访问量0
|
下载量0
段落导航相关论文