| 注册
首页|期刊导航|微型电脑应用|基于异常检测与优化深度学习的入侵检测系统

基于异常检测与优化深度学习的入侵检测系统

曹俊捷 董会杰 方思敏

微型电脑应用2025,Vol.41Issue(2):9-12,4.
微型电脑应用2025,Vol.41Issue(2):9-12,4.

基于异常检测与优化深度学习的入侵检测系统

Intrusion Detection System Based on Anomaly Detection and Optimized Deep Learning

曹俊捷 1董会杰 2方思敏3

作者信息

  • 1. 上海开放大学静安分校,信息实训中心,上海 200040
  • 2. 太原理工大学,新型传感器与智能控制教育部重点实验室,山西,太原 030024
  • 3. 上海市静安区业余大学,信息实训中心,上海 200040
  • 折叠

摘要

Abstract

A hybrid intrusion detection system based on anomaly detection and optimized deep learning is proposed for the secur-ity requirements of intrusion detection systems in a pervasive computing environment.The system uses cluster-based local out-lier factor(CBLOF)detection method to detect data outliers,convolutional neural network attention-based long short-term mernory(CNN-ALSTM)model for intrusion detection and classification,and poor and rich optimization algorithm(PROA)to optimize CNN-ALSTM hyperparameters.Experimental results on benchmark datasets such as KDD CUP99,NSL-KDD,UN-SW-NB15 and CICIDS2017 show that the proposed intrusion detection system obtains an average of 98.77%precision and 98.36%recall on the binary classification task,and 96.87%precision and 92.36%recall on the multi-classification task,with the highest binary classification precision of 98.73%.The results are all better than other deep learning models.

关键词

入侵检测系统/深度学习/异常检测/元搜索/智能环境

Key words

intrusion detection system/deep learning/anomaly detection/meta-search/intelligent environment

分类

信息技术与安全科学

引用本文复制引用

曹俊捷,董会杰,方思敏..基于异常检测与优化深度学习的入侵检测系统[J].微型电脑应用,2025,41(2):9-12,4.

基金项目

2022年度上海开放远程教育工程技术研究中心项目(KFKT2211) (KFKT2211)

微型电脑应用

1007-757X

访问量0
|
下载量0
段落导航相关论文