| 注册
首页|期刊导航|中南大学学报(自然科学版)|负载口独立阀控缸库普曼模型预测控制方法

负载口独立阀控缸库普曼模型预测控制方法

刘恒 陶建峰 孙炜 孙浩 刘成良

中南大学学报(自然科学版)2025,Vol.56Issue(3):911-922,12.
中南大学学报(自然科学版)2025,Vol.56Issue(3):911-922,12.DOI:10.11817/j.issn.1672-7207.2025.03.009

负载口独立阀控缸库普曼模型预测控制方法

Model predictive control method for independent metering valve-controlled cylinders by using koopman operators

刘恒 1陶建峰 1孙炜 1孙浩 1刘成良1

作者信息

  • 1. 上海交通大学机械系统与振动国家重点实验室,上海,200240
  • 折叠

摘要

Abstract

The independent metering valve control system(IMVCS)for hydraulic cylinders offers high control degrees of freedom and significant potential for improving system efficiency,presenting excellent application prospects in fields such as construction machinery.However,the increase of control degrees of freedom and the inherent nonlinearity of the valve metering equations pose challenges for achieving high-efficiency and high-precision control in such systems.A model predictive control(MPC)for hydraulic systems based on deep neural network Koopman operators was proposed.Firstly,through training,a high-precision linear predictive model of the controlled object was obtained and applied to the model predictive control of IMVCS.Secondly,an energy consumption term was introduced into the cost function of the controller.The flow and pressure of both chambers of the actuator were controlled to reduce energy consumption.Finally,the NSGA-II algorithm was used to optimize the controller parameters to achieve high-efficiency and high-precision control.The results show that the proposed method ensures control accuracy and achieves energy efficiency optimization.Compared with conventional PID control,the implemented strategy reduces energy consumption by at least 29%and maintains trajectory tracking errors within 0.7 mm.

关键词

负载口独立控制阀控液压缸系统(IMVCS)/模型预测控制(MPC)/Koopman算子/深度神经网络(DNN)

Key words

independent metering valve-controlled system(IMVCS)/model predictive control(MPC)/Koopman operator/deep neural network(DNN)

分类

机械工程

引用本文复制引用

刘恒,陶建峰,孙炜,孙浩,刘成良..负载口独立阀控缸库普曼模型预测控制方法[J].中南大学学报(自然科学版),2025,56(3):911-922,12.

基金项目

国家自然科学基金资助项目(52075320)(Project(52075320)supported by the National Natural Science Foundation of China) (52075320)

中南大学学报(自然科学版)

OA北大核心

1672-7207

访问量0
|
下载量0
段落导航相关论文