| 注册
首页|期刊导航|兵工自动化|一种智慧矿山场景下的目标检测算法

一种智慧矿山场景下的目标检测算法

姚珊珊 王静宇 郝斌 张飞 高鹭 任晓颖

兵工自动化2025,Vol.44Issue(4):18-25,8.
兵工自动化2025,Vol.44Issue(4):18-25,8.DOI:10.7690/bgzdh.2025.04.005

一种智慧矿山场景下的目标检测算法

A Target Detection Algorithm in Smart Mine Scene

姚珊珊 1王静宇 1郝斌 1张飞 1高鹭 1任晓颖1

作者信息

  • 1. 内蒙古科技大学信息工程学院,内蒙古 包头 014000
  • 折叠

摘要

Abstract

Aiming at the problems of low target pixels,numerous small targets and complex background in the production scene of open-pit mine,an multiscale and super-resolution network(MS_Net)is proposed based on YOLOv5s.In the feature fusion module,the three-scale detection of PANet is upgraded to four-scale detection to improve the multi-scale learning ability of the network,and sub-pixel convolution is used as an up-sampling method;A multi layer fusion(MLF)module is proposed to fuse the features of three output layers of PANet,and a feature map with rich semantic information and spatial information is obtained.In the prediction layer,SIoU is used as the localization loss function to optimize the parameters of the model.The experimental results show that the mAP of MS_Net is 79.4%and the FPS is 59 on PASCAL VOC data set,and the mAP is 80.2%and the FPS is 64.5 on mine data set,and the model can identify and detect the target in the open-pit mine quickly,accurately and efficiently.

关键词

智慧矿山/目标检测/YOLOv5s/多层特征融合/子像素卷积

Key words

smart mine/target detection/YOLOv5s/multi-layer feature fusion/sub-pixel convolution

分类

计算机与自动化

引用本文复制引用

姚珊珊,王静宇,郝斌,张飞,高鹭,任晓颖..一种智慧矿山场景下的目标检测算法[J].兵工自动化,2025,44(4):18-25,8.

基金项目

内蒙古自治区科技计划项目(2021GG0046 ()

2021GG0048) ()

兵工自动化

OA北大核心

1006-1576

访问量1
|
下载量0
段落导航相关论文