| 注册
首页|期刊导航|传感技术学报|基于轮胎垂向加速度的路面不平度等级识别研究

基于轮胎垂向加速度的路面不平度等级识别研究

卢俊辰 崔凯特 钟妤馨 胡梦宜 董林玺

传感技术学报2025,Vol.38Issue(3):458-467,10.
传感技术学报2025,Vol.38Issue(3):458-467,10.DOI:10.3969/j.issn.1004-1699.2025.03.012

基于轮胎垂向加速度的路面不平度等级识别研究

Research on Pavement Unevenness Grade Identification Based on Tire Vertical Acceleration

卢俊辰 1崔凯特 1钟妤馨 2胡梦宜 2董林玺1

作者信息

  • 1. 杭州电子科技大学电子信息学院智能微传感器与微系统教育部工程中心,浙江 杭州 310018||浙江宏振智能芯片有限公司,浙江 湖州 313200
  • 2. 杭州电子科技大学电子信息学院智能微传感器与微系统教育部工程中心,浙江 杭州 310018
  • 折叠

摘要

Abstract

Targeting at the problem of road surface unevenness grade recognition,a BP neural network recognition method based on the optimal characteristics of tire vertical acceleration is proposed.Firstly,the road surface unevenness model and the two-degree-of-freedom vehicle harshness model are constructed,and the tire vertical acceleration and road surface unevenness level are obtained through simu-lation.Then,based on the vertical acceleration of tires,40 feature extraction schemes are constructed successively,and a random forest model is introduced to evaluate the importance of each feature and preliminarily determine the optimal feature.Finally,40 features are used as input to the BP neural network,and the road surface unevenness level is used as the output,a three-layer BP neural network is constructed,and evaluation criteria such as accuracy are introduced to verify the optimal features.The results show that in the road sur-face unevenness grade recognition task based on the vertical acceleration feature of tires,the optimal feature is the sum of the absolute values of the second-order difference of the signal,and the BP neural network constructed with this feature as input not only has a recog-nition accuracy of 99%,but also has low complexity and good speed robustness.

关键词

路面不平度识别/BP神经网络/特征提取/随机森林/轮胎垂向加速度

Key words

pavement unevenness recognition/BP neural networks/feature extraction/random forest/tire vertical acceleration

分类

交通运输

引用本文复制引用

卢俊辰,崔凯特,钟妤馨,胡梦宜,董林玺..基于轮胎垂向加速度的路面不平度等级识别研究[J].传感技术学报,2025,38(3):458-467,10.

基金项目

浙江省级人才项目(2021R52009) (2021R52009)

传感技术学报

OA北大核心

1004-1699

访问量0
|
下载量0
段落导航相关论文