| 注册
首页|期刊导航|重庆大学学报|双材料含椭圆热夹杂的平面应变问题解析解

双材料含椭圆热夹杂的平面应变问题解析解

刘俊 Feodor M.Borodich 吕鼎 金晓清

重庆大学学报2025,Vol.48Issue(4):40-53,14.
重庆大学学报2025,Vol.48Issue(4):40-53,14.DOI:10.11835/j.issn.1000-582X.2024.268

双材料含椭圆热夹杂的平面应变问题解析解

A closed-form solution to an elliptic cylindrical thermal inclusion in a bi-material under plane strain

刘俊 1Feodor M.Borodich 1吕鼎 2金晓清3

作者信息

  • 1. 重庆大学 航空航天学院,重庆 400044
  • 2. 韦恩州立大学 生物医学工程系 底特律 48201
  • 3. 重庆大学 航空航天学院,重庆 400044||重庆大学 机械传动国家重点实验室,重庆 400044
  • 折叠

摘要

Abstract

This article addresses the plane strain problem of a bi-material system containing an elliptical cylindrical thermal inclusion.Using Eshelby's inclusion analysis method,we derive closed-form analytical solutions for the elastic field induced by the thermal inclusion.Inspired by Dundurs'parameters,we introduce a new material parameter(ranging from-1 to 1)and five tensorially structured expressions to succinctly represent the analytical solution,facilitating its practical applications.For circular inclusion scenarios,the analytical solution simplifies significantly,and we derive explicit jump conditions for displacement,strain,and stress at the bonded interface of the bi-material.By adjusting the Young's moduli and Poisson's ratios of the bi-material,the solution can reduce to cases of a full or half-plane containing a thermal elliptical inclusion.The accuracy of the proposed solution is validated through consistency with previously published analytical results and by matching numerical solutions from the literature,confirming the correctness and reliability of the derived analytical expressions.

关键词

椭圆热夹杂/完美结合界面/双材料/解析解

Key words

elliptic thermal inclusion/perfect bonded interface/bi-material/closed-form solution

分类

数理科学

引用本文复制引用

刘俊,Feodor M.Borodich,吕鼎,金晓清..双材料含椭圆热夹杂的平面应变问题解析解[J].重庆大学学报,2025,48(4):40-53,14.

基金项目

超常环境非线性力学全国重点实验室开放基金项目.Supported by Opening Fund of State Key Laboratory of Nonlinear Mechanics. ()

重庆大学学报

OA北大核心

1000-582X

访问量0
|
下载量0
段落导航相关论文