首页|期刊导航|重庆大学学报|基于XGB-KF模型的农业温室温度预测

基于XGB-KF模型的农业温室温度预测OA北大核心

Agricultural greenhouse temperature prediction based on the XGB-KF model

中文摘要英文摘要

针对农业温室大棚温度测量受噪声影响不易直接预测的问题,提出一种将XGBoost(extreme gradient boosting)和 Kalman filter 相结合的集成预测模型 XGB-KF(extreme gradient boosting with Kalman filter).该模型首先基于XGBoost对温室内部当前时刻的温度值进行初步估计,使用卡尔曼滤波(Kalman filter)对得到的估计结果进行动态修正,得到最终的预测结果.基于涿州地区农业温室大棚的传感器数据进行了数值实验,以均方根误差(root mean square error,RMSE)作为主要指标对模型进行性能评估.与XGBoost、Bi-LSTM和Bi-LSTM-KF方法相比较,XGB-KF的RMSE分别降低5.22%、10.85%、7.45%.

To address the challenge of agricultural greenhouse temperature measurement being highly susceptible to noise,which limits direct prediction accuracy,this study proposes an integrated prediction model,XGB-KF,combining XGBoost and the Kalman filter.First,the model estimates the current greenhouse temperature using XGBoost.Then,the Kalman filter dynamically adjusts the estimated result to refine the prediction.Numerical experiments are conducted using sensor data from a greenhouse in Zhuozhou,with root mean square error(RMSE)as the main evaluation metric.Compared with XGBoost,Bi-LSTM,and Bi-LSTM-KF methods,the XGB-KF model reduces RMSE by 5.22%,10.85%and 7.45%respectively.

黄威;贾若然;钟坤华;刘曙光

中国科学院重庆绿色智能技术研究院,重庆 400714||中国科学院大学,北京 100049科大讯飞股份有限公司,合肥 230031中国科学院重庆绿色智能技术研究院,重庆 400714||中国科学院大学,北京 100049中国科学院重庆绿色智能技术研究院,重庆 400714||中国科学院大学,北京 100049

计算机与自动化

集成模型机器学习时间序列温室温度

integrated modelmachine learningtime seriesgreenhouse temperature

《重庆大学学报》 2025 (4)

108-114,7

中国科学院重点资助项目(E351600201).Surpported by Key Research Programs of Chinese Academy of Sciences(E351600201).

10.11835/j.issn.1000-582X.2025.04.009

评论