| 注册
首页|期刊导航|重庆大学学报|基于XGB-KF模型的农业温室温度预测

基于XGB-KF模型的农业温室温度预测

黄威 贾若然 钟坤华 刘曙光

重庆大学学报2025,Vol.48Issue(4):108-114,7.
重庆大学学报2025,Vol.48Issue(4):108-114,7.DOI:10.11835/j.issn.1000-582X.2025.04.009

基于XGB-KF模型的农业温室温度预测

Agricultural greenhouse temperature prediction based on the XGB-KF model

黄威 1贾若然 2钟坤华 1刘曙光1

作者信息

  • 1. 中国科学院重庆绿色智能技术研究院,重庆 400714||中国科学院大学,北京 100049
  • 2. 科大讯飞股份有限公司,合肥 230031
  • 折叠

摘要

Abstract

To address the challenge of agricultural greenhouse temperature measurement being highly susceptible to noise,which limits direct prediction accuracy,this study proposes an integrated prediction model,XGB-KF,combining XGBoost and the Kalman filter.First,the model estimates the current greenhouse temperature using XGBoost.Then,the Kalman filter dynamically adjusts the estimated result to refine the prediction.Numerical experiments are conducted using sensor data from a greenhouse in Zhuozhou,with root mean square error(RMSE)as the main evaluation metric.Compared with XGBoost,Bi-LSTM,and Bi-LSTM-KF methods,the XGB-KF model reduces RMSE by 5.22%,10.85%and 7.45%respectively.

关键词

集成模型/机器学习/时间序列/温室温度

Key words

integrated model/machine learning/time series/greenhouse temperature

分类

信息技术与安全科学

引用本文复制引用

黄威,贾若然,钟坤华,刘曙光..基于XGB-KF模型的农业温室温度预测[J].重庆大学学报,2025,48(4):108-114,7.

基金项目

中国科学院重点资助项目(E351600201).Surpported by Key Research Programs of Chinese Academy of Sciences(E351600201). (E351600201)

重庆大学学报

OA北大核心

1000-582X

访问量0
|
下载量0
段落导航相关论文