| 注册
首页|期刊导航|重庆邮电大学学报(自然科学版)|车联网预感知服务请求及服务迁移机制

车联网预感知服务请求及服务迁移机制

陈冰旖 左琳立 李云

重庆邮电大学学报(自然科学版)2025,Vol.37Issue(2):196-203,8.
重庆邮电大学学报(自然科学版)2025,Vol.37Issue(2):196-203,8.DOI:10.3979/j.issn.1673-825X.202407030165

车联网预感知服务请求及服务迁移机制

Anticipatory service request and service migration mechanism in internet of vehicles

陈冰旖 1左琳立 2李云1

作者信息

  • 1. 重庆邮电大学 通信与信息工程学院,重庆 400065
  • 2. 重庆邮电大学 通信与信息工程学院,重庆 400065||重庆电子科技职业大学 通信工程学院,重庆 401331
  • 折叠

摘要

Abstract

With the rapid development of real-time vehicular applications,the data traffic and content requests in the inter-net of vehicles have surged dramatically.To ensure that vehicular users can obtain real-time and stable services while opti-mizing system costs,a presentiment service request mechanism for internet of vehicles scenarios is designed.This mecha-nism can make presentiment decisions based on environmental information,thereby reducing the costs associated with the migration process.A speed-based service migration optimization algorithm is proposed,which dynamically adjusts migration decisions according to the real-time speed of vehicles to ensure the efficiency and stability of the migration process.Consid-ering the uncertainty in the interactions between vehicular users,roadside units,and base stations,a presentiment multi-a-gent deterministic policy gradient algorithm is proposed to optimize migration strategies.By interacting with the environ-ment,agents gradually adjust their strategies to maximize long-term cumulative rewards.Experimental results demonstrate that the proposed algorithms effectively reduce system costs and significantly enhance system performance.

关键词

车联网/服务迁移/多智能体深度强化学习

Key words

internet of vehicle/service migration/multi-agent deep reinforcement learning

分类

电子信息工程

引用本文复制引用

陈冰旖,左琳立,李云..车联网预感知服务请求及服务迁移机制[J].重庆邮电大学学报(自然科学版),2025,37(2):196-203,8.

基金项目

重庆市自然科学基金创新发展联合基金项目(CSTB2022NSCQ-LZX0055) Chongqing Natural Science Foundation Innovation Development Joint Fund(CSTB2022NSCQ-LZX0055) (CSTB2022NSCQ-LZX0055)

重庆邮电大学学报(自然科学版)

OA北大核心

1673-825X

访问量0
|
下载量0
段落导航相关论文