| 注册
首页|期刊导航|重庆邮电大学学报(自然科学版)|非完美反馈链路下可变压缩率CSI反馈方法

非完美反馈链路下可变压缩率CSI反馈方法

黄凤翔 段红光 毛翔宇

重庆邮电大学学报(自然科学版)2025,Vol.37Issue(2):232-240,9.
重庆邮电大学学报(自然科学版)2025,Vol.37Issue(2):232-240,9.DOI:10.3979/j.issn.1673-825X.202401170014

非完美反馈链路下可变压缩率CSI反馈方法

Changeable compression ratio CSI feedback method under imperfect feedback links

黄凤翔 1段红光 1毛翔宇1

作者信息

  • 1. 重庆邮电大学 通信与信息工程学院,重庆 400065
  • 折叠

摘要

Abstract

In frequency division duplex(FDD)massive multiple input multiple output(MIMO)systems,a channel state information(CSI)feedback method based on changeable compression rate and denoising neural network is proposed to ad-dress the fixed compression rate and asymmetric FDD feedback link of current deep learning-based CSI feedback methods.This method adopts an autoencoder structure,which compresses CSI using a fixed compression rate encoder at the user end.Then,feedback constraints are used to limit the length of the feedback codeword.When the base station receives the feed-back codeword,it first fills the codeword with zero through feedback constraints,then uses a denoising unit to denoise it,and finally uses a decoder to reconstruct the denoised codeword into a CSI matrix.Simulation in a clustered delay line(CDL)channel environment shows that the proposed method can reduce storage overhead by about 48%compared to Csi-Net,and effectively suppress the impact of feedback errors on channel state information reconstruction.

关键词

大规模多输入多输出/信道状态信息/压缩反馈/深度学习

Key words

massive MIMO/channel state information/compress and feedback/deep learning

分类

电子信息工程

引用本文复制引用

黄凤翔,段红光,毛翔宇..非完美反馈链路下可变压缩率CSI反馈方法[J].重庆邮电大学学报(自然科学版),2025,37(2):232-240,9.

基金项目

重庆市自然科学基金项目(CSTB2022NSCQ-MSX1125) Natural Science Foundation of Chongqing(CSTB2022NSCQ-MSX1125) (CSTB2022NSCQ-MSX1125)

重庆邮电大学学报(自然科学版)

OA北大核心

1673-825X

访问量0
|
下载量0
段落导航相关论文