| 注册
首页|期刊导航|电讯技术|空天地边缘计算网络任务卸载策略

空天地边缘计算网络任务卸载策略

余翔 曲原宇 杨路

电讯技术2025,Vol.65Issue(4):503-510,8.
电讯技术2025,Vol.65Issue(4):503-510,8.DOI:10.20079/j.issn.1001-893x.240110001

空天地边缘计算网络任务卸载策略

Task Offloading Strategies for Space-Air-Ground Edge Computing Networks

余翔 1曲原宇 1杨路1

作者信息

  • 1. 重庆邮电大学 通信与信息工程学院,重庆 400065
  • 折叠

摘要

Abstract

In the space-air-ground integrated edge computing network,a large number of computational tasks can lead to overloading of edge servers,which increases the completion time and energy consumption of user tasks.To solve the problem,a three-tier collaborative task offloading and resource allocation scheme based on deep reinforcement learning is proposed,which creates a task overhead function with task completion time and user energy consumption,and jointly optimizes the user offloading decision,user transmission power,subcarrier allocation and computational resource allocation under the constraints of computational resources.First,the Lagrange multiplier method is used to optimize the computational resource allocation.Secondly,deep reinforcement learning is used to solve the offloading decision,user transmission power and subcarrier allocation,and finally the optimized solution is obtained by an alternating iteration method.The simulation results show that,compared with that of Deep Q-learning Network(DQN),Double DQN(DDQN)and Deep Deterministic Policy Gradient(DDPG),the mission overhead of the proposed scheme declines by approximately 19%,10%and 13%.

关键词

空天地一体化网络/移动边缘计算/计算卸载/资源分配/深度强化学习

Key words

space-air-ground intergated network/mobile edge computing/computational offloading/resource allocation/deep reinforcement learning

分类

信息技术与安全科学

引用本文复制引用

余翔,曲原宇,杨路..空天地边缘计算网络任务卸载策略[J].电讯技术,2025,65(4):503-510,8.

基金项目

重庆市自然科学基金创新发展联合基金(市教委)项目(CSTB2023NSCQ-LZX0076) (市教委)

电讯技术

OA北大核心

1001-893X

访问量0
|
下载量0
段落导航相关论文