| 注册
首页|期刊导航|电讯技术|基于时空卷积网络的通信信号调制识别

基于时空卷积网络的通信信号调制识别

陈发堂 刘泽 范子健

电讯技术2025,Vol.65Issue(4):518-524,7.
电讯技术2025,Vol.65Issue(4):518-524,7.DOI:10.20079/j.issn.1001-893x.240116003

基于时空卷积网络的通信信号调制识别

Modulation Recognition of Communication Signals Based on Spatiotemporal Convolutional Network

陈发堂 1刘泽 1范子健2

作者信息

  • 1. 重庆邮电大学 通信与信息工程学院,重庆 400065
  • 2. 重庆邮电大学 软件工程学院,重庆 400065
  • 折叠

摘要

Abstract

For the problems that modulation recognition methods based on deep learning do not utilize the original signal sequence information,the recognition rate is low,and the number of parameters is large,a modulation recognition algorithm based on Spatiotemporal Convolutional Network(SCN)is proposed.In order to prevent the loss of signal sequence information,the network first extracts the temporal features of the signal,and then extracts the spatial features of the signal.The temporal features are extracted using the Temporal Convolutional Network(TCN)structure.Two-Dimensional Convolution Neural Network(2D-CNN)is used to extract spatial features.In the final classification,Global Average Pooling(GAP)is used to replace the Flatten layer.Due to the application of causal expansion convolution and GAP in TCN,the simultaneous parameters of high recognition rate are greatly reduced.Compared with that of the traditional CNN2,ResNet,DenseNet,CLDNN and LSTM2,the IQ signal modulation recognition without preprocessing has the lowest number of parameters,and the average recognition accuracy is improved by 4.9%~16.5%.

关键词

通信信号/调制识别/深度学习/时域特征/空间特征/全局平均池化

Key words

communication signal/modulation recognition/deep learning/time domain characteristics/spatial characteristics/global average pooling

分类

电子信息工程

引用本文复制引用

陈发堂,刘泽,范子健..基于时空卷积网络的通信信号调制识别[J].电讯技术,2025,65(4):518-524,7.

基金项目

重庆市自然科学基金创新发展联合基金(中国星网)(CSTB2023NSCQ-LZX0114) (中国星网)

电讯技术

OA北大核心

1001-893X

访问量0
|
下载量0
段落导航相关论文