基于液态金属冷却的电池液冷方案设计及参数多目标优化OA
Liquid cooling model design and multi-objective optimization of battery parameters based on liquid metal cooling
[目的]针对锂电池高倍率放电产热问题,设计一种基于液态金属冷却的高效液冷方案,并通过多目标优化提升散热性能与系统稳定性.[方法]采用镓基液态金属作为冷却剂,设计单入口双出口液冷回路;利用Fluent软件进行数值模拟,分析冷却剂流速、管道高度、分支递增宽度及倾角对散热性能的影响;结合正交实验法筛选关键参数,并基于NSGA-II多目标遗传算法优化参数组合.[结果]优化后最优参数组合为冷却剂流速0.42 m/s、分支递增宽度0.13 mm、倾角87.38°、管道高度5.76 mm,系统最大温度312.66 K,温差11.66 K,压降0.712 kPa.与初始方案相比,最大温度降低0.53%,温差降低8.04%,压降略有增加.[结论]液态金属冷却显著提升散热效率,流速与管道高度对温度控制影响最大;NSGA-II算法可实现散热性能与压降的均衡优化,为高倍率电池热管理提供有效解决方案.
[Objective]To address the heat generation issue of lithium batteries under high-rate discharge,a liquid cooling scheme based on liquid metal was designed,aiming to enhance thermal performance and system stability through multi-objective optimization.[Methods]A single-inlet double-outlet cooling loop using gallium-based liquid metalwas proposed.Numerical simulations via Fluent were conducted to analyze the effects of coolant velocity,channelheight,branch width increment,and inclination angle on thermal performance.Orthogonal experiments and the NSGA-II multi-objective genetic algorithm were employed for parameter screening and optimization.[Results]The optimalparameters were determined as coolant velocity 0.42 m/s,branch width increment 0.13 mm,inclination angle 87.38°,and channel height 5.76 mm.The optimized system achieved a maximum temperature of 312.66 K,temperature difference of 11.66 K,and pressure drop of 0.712 kPa.Compared to the initial design,the maximum temperature and temperature difference decreased by 0.53%and 8.04%,respectively,with a slight increase in pressure drop.[Conclusion]Liquid metal cooling significantly improves heat dissipation efficiency,with velocity and channel height being dominant factors.The NSGA-II algorithm effectively balances thermal performance and pressure drop,offering a practical solution for high-rate battery thermal management..
杨利伟;马凯伦;周小明
河海大学机电工程学院,江苏 南京 210024河海大学机电工程学院,江苏 南京 210024河海大学机电工程学院,江苏 南京 210024
能源与动力
液态金属液冷高倍率放电正交实验多目标优化
liquid metalliquid coolinghigh rate dischargeorthogonal designmulti-objective optimization
《电力科技与环保》 2025 (2)
206-216,11
国家自然科学基金项目(12372261)国家能源集团科技项目(DY2023FK078)中国科学院微重力重点实验室课题(NML202305)
评论