| 注册
首页|期刊导航|辽宁石油化工大学学报|基于TOF的UWB室内定位技术与融合算法研究

基于TOF的UWB室内定位技术与融合算法研究

王东宁 黄越洋 石元博

辽宁石油化工大学学报2025,Vol.45Issue(2):90-96,7.
辽宁石油化工大学学报2025,Vol.45Issue(2):90-96,7.DOI:10.12422/j.issn.1672-6952.2025.02.012

基于TOF的UWB室内定位技术与融合算法研究

Research on TOF-Based UWB Indoor Positioning Technology and Fusion Algorithms

王东宁 1黄越洋 1石元博2

作者信息

  • 1. 辽宁石油化工大学 信息与控制工程学院,辽宁 抚顺 113001
  • 2. 辽宁石油化工大学 人工智能与软件学院,辽宁 抚顺 113001
  • 折叠

摘要

Abstract

Aiming at the problems of low positioning accuracy and poor stability in multi-effect and non-line-of-sight conditions,a new indoor positioning system Chan-Taylor-Unscented Kalman Filter(C-T-UKF)combined positioning algorithm is designed based on the time of flight positioning algorithm,combined with the Chan-Taylor(C-T)cooperative positioning algorithm,and fused with the Unscented Kalman Filter(UKF)algorithm.The system mainly consists of positioning base stations,positioning tags,wireless communication systems and upper computers,etc.The Chan algorithm is adopted to calculate the distance measured by the time of flight method,and the calculated coordinates are used as the initial value of the Taylor algorithm for iterative calculation.The iterative results are smoothed by the Unscented Kalman algorithm.The results show that the positioning system based on this algorithm has the characteristics of high accuracy,strong stability and low cost.The average positioning errors in line-of-sight and non-line-of-sight conditions are less than 0.17 m and 0.20 m respectively,and it can be applied to high-precision positioning scenarios.

关键词

室内定位/飞行时间/无迹卡尔曼滤波/非视距

Key words

Indoor positioning/Time of flight/Unscented kalman filter/Non-line of sight

分类

电子信息工程

引用本文复制引用

王东宁,黄越洋,石元博..基于TOF的UWB室内定位技术与融合算法研究[J].辽宁石油化工大学学报,2025,45(2):90-96,7.

基金项目

辽宁省教育厅科研项目(LJKMZ20220737) (LJKMZ20220737)

辽宁石油化工大学科研启动基金项目(2020XJJL009). (2020XJJL009)

辽宁石油化工大学学报

1672-6952

访问量4
|
下载量0
段落导航相关论文