| 注册
首页|期刊导航|高校地质学报|基于生成对抗网络的地质灾害监测异常数据识别方法

基于生成对抗网络的地质灾害监测异常数据识别方法

刘将成 郝光耀 陶虹 徐岩岩 王亨 江先晖 陈群

高校地质学报2025,Vol.31Issue(2):174-184,11.
高校地质学报2025,Vol.31Issue(2):174-184,11.DOI:10.16108/j.issn1006-7493.2024002

基于生成对抗网络的地质灾害监测异常数据识别方法

Anomaly Data Identification Method for Geological Disaster Monitoring Based on Generate Adversarial Network

刘将成 1郝光耀 2陶虹 2徐岩岩 2王亨 2江先晖 1陈群1

作者信息

  • 1. 西北工业大学 软件学院,西安 710072
  • 2. 陕西省地质环境监测总站,西安 710054||自然资源部 矿山地质灾害成灾机理与防控重点实验室,西安 710068||自然资源部 陕西西安地裂缝地面沉降野外科学观测研究站,西安 710054
  • 折叠

摘要

Abstract

Reliable geological hazard warning depends on accurate sensing data.In order to solve the problems of large noise and long time sequence characteristics of geological monitoring sensor data,we propose a method to identify abnormal data of geological disaster monitoring based on generative adversarial network.Firstly,the RandAugment algorithm is used to enrich the diversity of training data and improve the robustness to noise.Secondly,multi-head self-attention mechanism is used to extract long time series features,and the stability of early warning performance is improved by adversarial training mechanism.Experiments on four real-time series sensor data streams extracted from hidden geological disaster points in Shaanxi Province show that the proposed method has a 5%-10%improvement in AUROC and F1 indexes,compared to widely used machine learning methods.

关键词

地质灾害监测/传感数据/神经网络/生成对抗网络/异常检测

Key words

geological disaster monitoring/sensing data/neural network/generative adversarial network(GAN)/anomaly detection

分类

计算机与自动化

引用本文复制引用

刘将成,郝光耀,陶虹,徐岩岩,王亨,江先晖,陈群..基于生成对抗网络的地质灾害监测异常数据识别方法[J].高校地质学报,2025,31(2):174-184,11.

基金项目

国陕西省重点研发计划项目(2022SF-360) (2022SF-360)

国家自然基金项目(62172335)联合资助 (62172335)

高校地质学报

OA北大核心

1006-7493

访问量0
|
下载量0
段落导航相关论文