| 注册
首页|期刊导航|河北科技大学学报|基于CWT-IDenseNet的滚动轴承故障诊断方法

基于CWT-IDenseNet的滚动轴承故障诊断方法

贾广飞 梁汉文 杨金秋 武哲 韩雨欣

河北科技大学学报2025,Vol.46Issue(2):129-140,12.
河北科技大学学报2025,Vol.46Issue(2):129-140,12.DOI:10.7535/hbkd.2025yx02002

基于CWT-IDenseNet的滚动轴承故障诊断方法

Fault diagnosis method for rolling bearings based on CWT-IDenseNet

贾广飞 1梁汉文 1杨金秋 1武哲 1韩雨欣2

作者信息

  • 1. 河北科技大学机械工程学院,河北 石家庄 050018
  • 2. 河北大学资源利用与环境保护研究中心,河北 保定 071002
  • 折叠

摘要

Abstract

Aiming at the problems of incomplete information contained in one-dimensional signals and overfitting of the DenseNet under variable working conditions,a rolling bearing fault diagnosis method based on continuous wavelet transform(CWT)time-frequency images and an improved densely connected convolutional network(IDenseNet)was proposed.Firstly,the one-dimensional vibration signal was converted into two-dimensional time-frequency images by CWT.Then,the DenseNet network was turned into IDenseNet,the ReLU activation function in the first convolutional block of DenseNet was replaced by the Swish activation function(which was smoother),and the style-based recalibration module(SRM)and the convolutional block attention module(CBAM)were introduced into the DenseNet network.The SRM focused on the weight of feature channels,while CBAM enhanced the feature expression ability from the two dimensions of channel and space.Finally,the two-dimensional time-frequency image was input into the IDenseNet model for feature extraction and fault diagnosis,and the fault diagnosis results were output through the Softmax layer of the model.The results show that the average fault recognition accuracy of the proposed method reaches 97.80%under constant and variable conditions,and the average fault recognition accuracy reaches 99.44%in the transfer learning model.The CWT-IDenseNet method can effectively improve the generalization ability of the model,which has significant advantages under constant and variable conditions,providing reference for improving the accuracy and reliability of rolling bearing fault diagnosis.

关键词

机械动力学与振动/滚动轴承故障诊断/连续小波变换/密集连接卷积网络/注意力机制

Key words

mechanical dynamics and vibration/fault diagnosis of rolling bearing/continuous wavelet transform/densely con-nected convolutional networks/attention mechanism

分类

机械工程

引用本文复制引用

贾广飞,梁汉文,杨金秋,武哲,韩雨欣..基于CWT-IDenseNet的滚动轴承故障诊断方法[J].河北科技大学学报,2025,46(2):129-140,12.

基金项目

国家自然科学基金(52206224) (52206224)

中央引导地方科技发展资金项目(226Z1906G) (226Z1906G)

河北省教育厅科学研究项目(CXY2024038) (CXY2024038)

河北科技大学学报

OA北大核心

1008-1542

访问量0
|
下载量0
段落导航相关论文