| 注册
首页|期刊导航|河北科技大学学报|面向中医医案的事件抽取方法研究

面向中医医案的事件抽取方法研究

马月坤 崔漠晓

河北科技大学学报2025,Vol.46Issue(2):141-150,10.
河北科技大学学报2025,Vol.46Issue(2):141-150,10.DOI:10.7535/hbkd.2025yx02003

面向中医医案的事件抽取方法研究

Research on event extraction methods for medical records of traditional Chinese medicine

马月坤 1崔漠晓2

作者信息

  • 1. 华北理工大学人工智能学院,河北 唐山 063210||河北省工业智能感知重点实验室,河北 唐山 063210||北京科技大学计算机与通信工程学院,北京 100083||材料领域知识工程北京市重点实验室,北京 100083
  • 2. 华北理工大学人工智能学院,河北 唐山 063210
  • 折叠

摘要

Abstract

In response to the issue of fuzzy event argument boundaries in traditional Chinese medicine(TCM)event extraction,an event extraction model integrating local and global semantic features(EE-LGSF)was proposed,which combined convolutional neural networks,bidirectional long short-term memory networks,and attention mechanisms to enhance the effectiveness of TCM event extraction.Firstly,multi-dimensional local feature information of the text was extracted by combining convolutional neural networks with different filter window sizes,while the global feature information of the text was captured using bidirectional long short-term memory networks.Secondly,on this basis,dynamic interaction between local and global information was achieved through gating mechanisms to enhance the ability of model to identify argument boundaries.Furthermore,a fuzzy span attention mechanism was introduced to dynamically adjust the attention range,thereby optimizing the decision-making process for argument spans.Finally,label prediction was performed using conditional random fields.The results indicate that the proposed model improves the F1 score by 3.0 to 11.0 percentage points on the TCM medical records data-set,demonstrating superior performance in addressing TCM event extraction issues compared to related models.The proposed model effectively leverages both local and global semantic information of the text,enhances the flexibility of span learning and improves the capability of the model to identify argument boundaries,thereby achieving better performance in TCM event extraction.It has reference value for the inheritance and development of TCM knowledge.

关键词

自然语言处理/事件抽取/中医医案/注意力机制/卷积神经网络/动态融合/跨度

Key words

natural language processing/event extraction/traditional Chinese medicine medical records/attention mecha-nism/convolutional neural network/dynamic fusion/span

分类

计算机与自动化

引用本文复制引用

马月坤,崔漠晓..面向中医医案的事件抽取方法研究[J].河北科技大学学报,2025,46(2):141-150,10.

基金项目

国家重点研发计划项目(2022YFC3502303) (2022YFC3502303)

河北省工业智能感知重点实验室项目(SZX2021013) (SZX2021013)

河北科技大学学报

OA北大核心

1008-1542

访问量0
|
下载量0
段落导航相关论文