| 注册
首页|期刊导航|黑龙江科技大学学报|改进YOLOv8的交通标志检测模型

改进YOLOv8的交通标志检测模型

赵艳芹 赵文栋

黑龙江科技大学学报2025,Vol.35Issue(2):344-348,5.
黑龙江科技大学学报2025,Vol.35Issue(2):344-348,5.DOI:10.3969/j.issn.2095-7262.2025.02.026

改进YOLOv8的交通标志检测模型

Improved YOLOv8 model for traffic sign detection

赵艳芹 1赵文栋1

作者信息

  • 1. 黑龙江科技大学 计算机与信息工程学院,哈尔滨 150022
  • 折叠

摘要

Abstract

This paper is intended to address the low detection accuracy of the traffic signs in complex backgrounds,the missed and fault detections of small-target traffic signs,and the hard deployment due to oversized model,and proposes an improved traffic sign detection model based on YOLOv8.The study consists of designing a lightweight C2fRVB module to replace the original C2f module,enhancing the global feature extraction capabilities,reducing the parameters by RepViTBlock,introducing a small-target detection layer,and integrating shallow feature details to improve recognition of small targets;and adop-ting ADown downsampling instead of traditional convolutional downsampling to minimize the loss of fea-ture map information,and boost the detection accuracy.The results demonstrate that the improved model enables the precision,recall,and average accuracy of 78.8%,69.2%,and 77.1%respectively in the TT100K dataset,representing the improvements of 7.9%,5.5%,and 7.2%over against the YOLOv8n model,while reducing parameters by 38.9%.The optimized model achieves both lightweight design and better recognition accuracy.

关键词

YOLOv8/交通标志/RepViT/小目标检测层/下采样

Key words

YOLOv8/traffic signs/RepViT/small target detection layer/down-sampling

分类

信息技术与安全科学

引用本文复制引用

赵艳芹,赵文栋..改进YOLOv8的交通标志检测模型[J].黑龙江科技大学学报,2025,35(2):344-348,5.

基金项目

黑龙江省省属高等学校基本科研业务费项目(2022-KYYWF-0565) (2022-KYYWF-0565)

黑龙江科技大学学报

2095-7262

访问量6
|
下载量0
段落导航相关论文