| 注册
首页|期刊导航|江汉大学学报(自然科学版)|基于改进YOLOv5的无人机图像目标检测算法研究

基于改进YOLOv5的无人机图像目标检测算法研究

倪业成 秦志雨 阮行 熊昕 胡曦 常君明

江汉大学学报(自然科学版)2025,Vol.53Issue(2):87-96,10.
江汉大学学报(自然科学版)2025,Vol.53Issue(2):87-96,10.DOI:10.16389/j.cnki.cn42-1737/n.2025.02.010

基于改进YOLOv5的无人机图像目标检测算法研究

UAV Image Target Detection Algorithm Based on Improved YOLOv5

倪业成 1秦志雨 1阮行 1熊昕 1胡曦 1常君明1

作者信息

  • 1. 江汉大学 人工智能学院,湖北 武汉 430056
  • 折叠

摘要

Abstract

Given the many problems with small targets in images in drone scenes,this paper proposed an improved YOLOv5(I-YOLOv5)model based on the traditional YOLOv5 model.Firstly,a small-target detection head was added to improve the network's ability to represent small targets.Secondly,the SimAM attention mechanism was added to make the network more focused on small-target objects.Thirdly,it changed the coupled detection head in YOLOv5 was changed to a decoupled detection head to speed up model training and effectively improve model accuracy.Finally,the CBS structure in the neck of the original model was modified to the GSconv structure to reduce model parameters and improve model accuracy.On the Visdrone2019 data set,the I-YOLOv5 model outperformed the original YOLOv5 model by 6.6%and 4.2%in mAP50 and mAP50∶95.This confirms that our proposed model has certain advancements in the field of small-target UAV images.

关键词

无人机图像/SimAM/GSconv/小目标检测头

Key words

UAV images/SimAM/GSconv/small-target detection head

分类

信息技术与安全科学

引用本文复制引用

倪业成,秦志雨,阮行,熊昕,胡曦,常君明..基于改进YOLOv5的无人机图像目标检测算法研究[J].江汉大学学报(自然科学版),2025,53(2):87-96,10.

基金项目

江汉大学校级科研项目(2022XS15) (2022XS15)

江汉大学学报(自然科学版)

1673-0143

访问量0
|
下载量0
段落导航相关论文