| 注册
首页|期刊导航|计量学报|一种基于改进YOLOv8的带状合金功能材料缺陷检测方法

一种基于改进YOLOv8的带状合金功能材料缺陷检测方法

杨威 杨俊 许聪源 夏亚金

计量学报2025,Vol.46Issue(3):329-339,11.
计量学报2025,Vol.46Issue(3):329-339,11.DOI:10.3969/j.issn.1000-1158.2025.03.04

一种基于改进YOLOv8的带状合金功能材料缺陷检测方法

A Defect Detection Method for Strip Alloy Functional Materials Based on Improved YOLOv8

杨威 1杨俊 2许聪源 2夏亚金3

作者信息

  • 1. 嘉兴大学 信息科学与工程学院,浙江 嘉兴 314001||浙江理工大学 计算机科学与技术学院,浙江 杭州 310018
  • 2. 嘉兴大学 信息科学与工程学院,浙江 嘉兴 314001
  • 3. 海盐中达金属电子材料有限公司,浙江 嘉兴 314300
  • 折叠

摘要

Abstract

In order to solve the problems of missed detection,false detection,and slow detection speed in the defect detection of strip alloy functional materials,a defect detection algorithm for strip alloy functional materials based on improved YOLOv8 is proposed.In order to fully integrate the multi-scale features extracted by the model backbone network,a multi-scale feature encoder(MFE)module is first designed,and a multiscal feature affregation-diffusion(MFAD)structure is constructed at the neck.The unique diffusion mechanism is used to diffuse features with rich contextual information to all scales.Then,a shared parameter task dynamic alignment detection head(TDADH)is designed at the head of the model.Through convolution parameter sharing and task alignment mechanisms,the model complexity is reduced while the detection accuracy is improved.Finally,a perceptual attention spatial pyramid pooling(PASPP)module is designed to enhance the feature expression ability of the model using the explicit dynamic selection mechanism of attention mechanism.Experimental results indicate that the method proposed attains a mean average precision(PmAP50)of 90.1%on the alloy functional material dataset.It boasts a parameter count of 2.543×106 and a detection speed of 232 FPS(Frames Per Second),outperforming leading deep detection algorithms.Moreover,it achieves top performance on the GC10-DET and PASCAL VOC2012 datasets,demonstrating strong generalizability ability.

关键词

机器视觉检测/表面缺陷检测/带状合金功能材料/多尺度融合/解耦检测头/注意力机制/YOLOv8

Key words

machine vision inspection/surface defect detection/strip alloy functional materials/multi-scale fusion/decoupling detection head/attention mechanism/YOLOv8

引用本文复制引用

杨威,杨俊,许聪源,夏亚金..一种基于改进YOLOv8的带状合金功能材料缺陷检测方法[J].计量学报,2025,46(3):329-339,11.

基金项目

国家自然科学基金(62302197) (62302197)

浙江省自然科学基金(LQ23F020006) (LQ23F020006)

嘉兴市科技计划基金(2024AD10045) (2024AD10045)

计量学报

OA北大核心

1000-1158

访问量0
|
下载量0
段落导航相关论文