| 注册
首页|期刊导航|计算机工程|基于多尺度聚合与高分辨率增强的CTA脑血管分割模型

基于多尺度聚合与高分辨率增强的CTA脑血管分割模型

张天旭 黄慧 黄丙仓 马燕 徐傲 李晓艳 周孝雯 刘之之

计算机工程2025,Vol.51Issue(4):37-46,10.
计算机工程2025,Vol.51Issue(4):37-46,10.DOI:10.19678/j.issn.1000-3428.0070221

基于多尺度聚合与高分辨率增强的CTA脑血管分割模型

CTA Cerebral Vessel Segmentation Model Based on Multi-scale Aggregation and High-resolution Enhancement

张天旭 1黄慧 1黄丙仓 2马燕 1徐傲 2李晓艳 2周孝雯 2刘之之2

作者信息

  • 1. 上海师范大学信息与机电工程学院,上海 201412
  • 2. 上海市浦东新区公利医院影像科,上海 200135
  • 折叠

摘要

Abstract

Cerebral vessels in brain CT Angiography(CTA)images exhibit diverse morphologies and distributions with significant variations among patients.The standard U-Net often struggles to adapt to local vessel morphology,leading to the loss of small target information during down-sampling and neglecting the correlations among scattered objects.To address these challenges,this study enhances the U-Net architecture and introduces the BVU-Net,a cerebral vessel segmentation network that utilizes multi-scale aggregation and high-resolution enhancement.The BVU-Net designs a Multi-Scale Feature Aggregation(MSFA)module in its bottleneck layer,which captures local vessel features at various scales as well as global correlation features.This module integrates the Dilated Deformable Pyramid(DDP)path and the Global Attention(GA)path.In addition,a High-Resolution Feature Enhancement(HRFE)module is incorporated into the skip connection paths,allowing for the effective use of advanced features with richer semantic information.This enhancement improves the representation of high-resolution features and supplements the information on small vessels.The performance of the BVU-Net is evaluated on the public dataset 3D-IRCADb and the private dataset GLCTA,achieving Dice scores of 0.787 2 and 0.924 8 and Mean Intersection over Union(MIoU)scores of 0.832 2 and 0.932 1,respectively.These results demonstrate that the BVU-Net outperforms other improved U-Net segmentation models and exhibits notable generalization capabilities,providing valuable insights for future clinical treatment and prognosis analysis.

关键词

脑血管分割/急性缺血性卒中/多尺度特征聚合/高分辨率增强/可变形卷积

Key words

cerebral vessel segmentation/Acute Ischemic Stroke(AIS)/Multi-Scale Feature Aggregation(MSFA)/high-resolution enhancement/deformable convolution

分类

计算机与自动化

引用本文复制引用

张天旭,黄慧,黄丙仓,马燕,徐傲,李晓艳,周孝雯,刘之之..基于多尺度聚合与高分辨率增强的CTA脑血管分割模型[J].计算机工程,2025,51(4):37-46,10.

基金项目

国家自然科学基金(61501297). (61501297)

计算机工程

OA北大核心

1000-3428

访问量0
|
下载量0
段落导航相关论文