| 注册
首页|期刊导航|计算机工程|基于改进高效通道注意力机制的多特征语音情感识别

基于改进高效通道注意力机制的多特征语音情感识别

杜晨阳 张雪英 黄丽霞 李娟

计算机工程2025,Vol.51Issue(4):97-106,10.
计算机工程2025,Vol.51Issue(4):97-106,10.DOI:10.19678/j.issn.1000-3428.0069185

基于改进高效通道注意力机制的多特征语音情感识别

Multi-Feature Speech Emotion Recognition Based on Improved Efficient Channel Attention Mechanism

杜晨阳 1张雪英 1黄丽霞 1李娟1

作者信息

  • 1. 太原理工大学电子信息与光学工程学院,山西太原 030024
  • 折叠

摘要

Abstract

The attention mechanism has been widely employed in the field of Speech Emotion Recognition(SER).However,traditional attention modules,while enhancing model performance,also significantly increase the model parameter count.Although the Efficient Channel Attention(ECA)mechanism has a small number of parameters,it can only generate attention weights for the channel dimension.In response to this challenge,an Improved ECA(IECA)module is proposed.IECA module generates corresponding weights for various dimensions of input feature maps with a relatively small number of parameters,enabling the model to more effectively focus on and utilize crucial information within the feature maps.Additionally,to further enhance recognition rates,spectrogram and IS10 features are separately extracted from the speech data.Employing a fusion network,predictions from different branches are combined to yield the final prediction.The proposed model obtained Weighted Accuracy(WA)of 91.63%and 92.46%and Unweighted Average Recall(UAR)of 91.25%and 92.33%on EMODB and CASIA datasets,respectively,which are higher by 2.69-8.43 percentage points and 4.16-10.69 percentage points,respectively,than those reported in previous research.

关键词

深度学习/语音情感识别/注意力机制/多特征融合/决策级融合

Key words

deep learning/Speech Emotion Recognition(SER)/attention mechanism/multi-feature fusion/decision level fusion

分类

计算机与自动化

引用本文复制引用

杜晨阳,张雪英,黄丽霞,李娟..基于改进高效通道注意力机制的多特征语音情感识别[J].计算机工程,2025,51(4):97-106,10.

基金项目

国家自然科学基金(62271342). (62271342)

计算机工程

OA北大核心

1000-3428

访问量0
|
下载量0
段落导航相关论文