| 注册
首页|期刊导航|计算机与数字工程|基于Apriori关联分析的协同过滤改进算法

基于Apriori关联分析的协同过滤改进算法

王琦 王逊 黄树成

计算机与数字工程2025,Vol.53Issue(3):617-622,665,7.
计算机与数字工程2025,Vol.53Issue(3):617-622,665,7.DOI:10.3969/j.issn.1672-9722.2025.03.001

基于Apriori关联分析的协同过滤改进算法

Improved Collaborative Filtering Algorithm Based on Apriori Association Analysis

王琦 1王逊 1黄树成1

作者信息

  • 1. 江苏科技大学计算机学院 镇江 212000
  • 折叠

摘要

Abstract

Collaborative filtering techniques are widely used in personalized recommendation systems.However,their limita-tions in handling data sparsity often lead to insufficient accuracy in recommendation results.This paper proposes an improved collab-orative filtering algorithm by introducing association rule mining for association analysis.Firstly,effective strong association rules are obtained through Apriori association analysis to construct a recommendation score calculation method,which is then used for rat-ing prediction.At the same time,considering the timeliness issues of traditional collaborative filtering algorithms in recommendation systems,penalty terms and time factors are introduced to optimize the original similarity measurement algorithm,reducing the error caused by the randomness of similarity calculations.Finally,a hybrid recommendation result is generated by integrating two differ-ent recommendation strategies.Experimental results show that,compared with classical collaborative filtering methods,the pro-posed improved algorithm significantly alleviates the data sparsity problem and enhances prediction accuracy,thereby improving the performance of the recommendation system.

关键词

协同过滤/关联分析/时效性/相似度/混合推荐

Key words

collaborative filtering/association analysis/timeliness/similarity/hybrid recommendation

分类

计算机与自动化

引用本文复制引用

王琦,王逊,黄树成..基于Apriori关联分析的协同过滤改进算法[J].计算机与数字工程,2025,53(3):617-622,665,7.

基金项目

国家自然科学基金项目"基于鲁棒表现建模的目标跟踪方法研究"(编号:61772244)资助. (编号:61772244)

计算机与数字工程

1672-9722

访问量0
|
下载量0
段落导航相关论文