| 注册
首页|期刊导航|江西建材|基于PCA-BP神经网络的既有建筑加固改造工程成本预测研究

基于PCA-BP神经网络的既有建筑加固改造工程成本预测研究

李培

江西建材Issue(2):354-357,4.
江西建材Issue(2):354-357,4.

基于PCA-BP神经网络的既有建筑加固改造工程成本预测研究

Cost Prediction of Existing Building Renovation Based on PCA-BP Neural Network

李培1

作者信息

  • 1. 西安工商学院,陕西 西安 710200
  • 折叠

摘要

Abstract

In order to improve the economic cost prediction accuracy of existing building strengthening and renovation projects,principal com-ponent analysis(PCA)was used to pre-process the original data,and the economic cost prediction model of existing building strengthening and renovation projects was established by PACC-BP neural network,and tested and verified.The results show that the cumulative variance contribution rate of the three principal components extracted by PCA is 85.668%,which is greater than 85%,that is,the extracted principal components are reasonable and reliable.After the establishment of the model,the predicted value and the actual value of the cost show an ap-proximate linear positive correlation trend,and the average error of the two is 3.21%,which proves that the model has good prediction accura-cy.Therefore,the model building method can be used to predict the project cost in the investment stage.

关键词

既有建筑工程/PCA-BP神经网络/工程造价/预估模型

Key words

Existing building project/PCA-BP neural network/Project cost/Prediction model

分类

建筑与水利

引用本文复制引用

李培..基于PCA-BP神经网络的既有建筑加固改造工程成本预测研究[J].江西建材,2025,(2):354-357,4.

江西建材

1006-2890

访问量5
|
下载量0
段落导航相关论文