| 注册
首页|期刊导航|流体机械|可靠性强化试验技术在电动闸阀故障识别中的应用

可靠性强化试验技术在电动闸阀故障识别中的应用

张林 汤文斌 刘杰 闫晓 湛力 李明刚 周吴

流体机械2025,Vol.53Issue(3):110-118,9.
流体机械2025,Vol.53Issue(3):110-118,9.DOI:10.3969/j.issn.1005-0329.2025.03.014

可靠性强化试验技术在电动闸阀故障识别中的应用

Application of reliability enhancement test technology in fault identification of electric gate valve

张林 1汤文斌 2刘杰 3闫晓 2湛力 2李明刚 2周吴4

作者信息

  • 1. 中国核动力研究设计院,成都 610213||电子科技大学 机械与电气工程学院,成都 611731
  • 2. 中国核动力研究设计院,成都 610213
  • 3. 中国核动力研究设计院,成都 610213||四川大学 计算机学院,成都 610065
  • 4. 电子科技大学 机械与电气工程学院,成都 611731
  • 折叠

摘要

Abstract

To investigate the reliability of electric gate valves and challenges in minor fault identification,reliability enhancement testing(RET)technology was applied to simulate valve faults under non-destructive conditions.Response data from two typical failure modes were collected and analyzed using three machine learning methods(decision tree,random forest,gradient boosting)combined with two optimization approaches(grid search,actor-critic reinforcement learning).Results indicate that RET effectively simulates valve sticking and jamming faults without physical damage,achieving cost-efficient fault replication.The integration of current and vibration features significantly enhances fault recognition accuracy:normal data identification accuracy reaches 98%with random forest and gradient boosting,while fault data identification peaks at 82%using random forest and decision tree.Multi-feature fusion improves model performance by leveraging data characteristics.Reinforcement learning boosts random forest accuracy by 21%(vibration features),15%(vibration-current features),and 6%(current features),but degrades gradient boosting performance.Decision Tree excels in processing multi-feature data with superior fault recognition,while random forest maintains robust performance across single and combined features.Gradient boosting exhibits instability requiring feature-specific optimization.For industrial applications,random forest and decision tree with multi-feature fusion are recommended to enhance classification performance.This study provides technical references for electric gate valve fault diagnosis.

关键词

电动阀门/可靠性强化/故障模拟/故障识别

Key words

electric valve/reliability enhancement/fault simulation/fault identification

分类

能源科技

引用本文复制引用

张林,汤文斌,刘杰,闫晓,湛力,李明刚,周吴..可靠性强化试验技术在电动闸阀故障识别中的应用[J].流体机械,2025,53(3):110-118,9.

基金项目

国家自然科学基金项目(52475120) (52475120)

流体机械

OA北大核心

1005-0329

访问量0
|
下载量0
段落导航相关论文