| 注册
首页|期刊导航|可再生能源|基于区间电气 DebtRank 算法的含风电电力系统脆弱节点识别

基于区间电气 DebtRank 算法的含风电电力系统脆弱节点识别

李利娟 李月 丁钢伟 吕志强 曾亦惟

可再生能源2025,Vol.43Issue(4):521-527,7.
可再生能源2025,Vol.43Issue(4):521-527,7.

基于区间电气 DebtRank 算法的含风电电力系统脆弱节点识别

Identification of vulnerable nodes in power system containing wind power based on interval Electrical DebtRank algorithm

李利娟 1李月 2丁钢伟 2吕志强 2曾亦惟2

作者信息

  • 1. 湘潭大学 自动化与电子信息学院,湖南 湘潭 411105||湖南国家应用数学中心,湖南 湘潭 411105
  • 2. 湘潭大学 自动化与电子信息学院,湖南 湘潭 411105
  • 折叠

摘要

Abstract

In response to the issue that the randomness and volatility of wind power can affect the vulnerability assessment of the power grid and the identification of critical nodes,this paper proposes an interval-based Electrical DebtRank algorithm to identify vulnerable nodes within the power grid.The method first incorporates the node's offset status and characteristics to improve the traditional Electrical DebtRank algorithm.Then,interval numbers are used to represent the randomness and volatility of wind power generation,leading to the development of the interval-based Electrical DebtRank algorithm to identify vulnerable nodes in a wind-integrated power system.Finally,simulation results on the IEEE-118 bus system demonstrate that when the vulnerable nodes identified by the proposed method are attacked,the system's power supply capability drops to 33%of its normal state,with a significant reduction in the system's power transmission capacity.

关键词

脆弱性评估/关键节点/偏移状态/区间电气DebtRank算法

Key words

vulnerability assessment/critical nodes/migration status/interval Electrical DebtRank algorithm

分类

能源与动力

引用本文复制引用

李利娟,李月,丁钢伟,吕志强,曾亦惟..基于区间电气 DebtRank 算法的含风电电力系统脆弱节点识别[J].可再生能源,2025,43(4):521-527,7.

基金项目

国家自然科学基金(52077189). (52077189)

可再生能源

OA北大核心

1671-5292

访问量0
|
下载量0
段落导航相关论文