| 注册
首页|期刊导航|农机化研究|基于YOLOv7和YCrCb的火龙果识别与分割方法

基于YOLOv7和YCrCb的火龙果识别与分割方法

罗陈迪 李文涛 商枫楠 肖明玮 陈桥 欧阳春凡 周学成

农机化研究2025,Vol.47Issue(7):59-64,6.
农机化研究2025,Vol.47Issue(7):59-64,6.DOI:10.13427/j.issn.1003-188X.2025.07.008

基于YOLOv7和YCrCb的火龙果识别与分割方法

Identification and Segmentation Method of Dragon Fruit Based on YOLOv7 and YCrCb

罗陈迪 1李文涛 1商枫楠 1肖明玮 1陈桥 1欧阳春凡 1周学成1

作者信息

  • 1. 广东省农业人工智能重点实验室,广州 510642||华南农业大学 南方农业机械与装备关键技术教育部重点实验室,广州 510642||华南农业大学 工程学院/广东省农业航空应用工程技术研究中心,广州 510642
  • 折叠

摘要

Abstract

At the current stage,dragon fruits are primarily harvested manually.Delayed harvesting can result in less freshness of fruits,leading to a loss in fruit quality and compromising their storage potential.To address these issues,the research on developing dragon fruit harvesting robots for automation has become an important initiative.Image recognition and segmentation of dragon fruits play a crucial role in achieving automated harvesting.For this,proposed an algorithm that combines YOLOv7 and the YCrCb color space for the recognition and segmentation of dragon fruits in the complex background.The algorithm utilized the YCrCb color space in conjunction with methods such as the OTSU threshold seg-mentation algorithm and morphological operations to segment the fruit from the background within the detection boxes of the YOLOv7 network.In order to evaluate the performance of the YOLOv7 network,a comparison was made with the Faster R-CNN network under the same experimental conditions.The results showed that the average detection accuracy of YOLOv7 improved by 6.81%to 98.82%,and the F1 score increased by 0.22 to 0.95.Additionally,the YCrCb col-or space allowed for effective segmentation of dragon fruits with an average processing time of approximately 108 ms.

关键词

火龙果/YOLOv7/图像分割/YCrCb/OTSU算法

Key words

dragon fruit/YOLOv7/image segmentation/YCrCb/OTSU algorithm

分类

农业科技

引用本文复制引用

罗陈迪,李文涛,商枫楠,肖明玮,陈桥,欧阳春凡,周学成..基于YOLOv7和YCrCb的火龙果识别与分割方法[J].农机化研究,2025,47(7):59-64,6.

基金项目

广东省科技计划项目(2021B1212040009) (2021B1212040009)

农机化研究

OA北大核心

1003-188X

访问量0
|
下载量0
段落导航相关论文