| 注册
首页|期刊导航|南通大学学报(自然科学版)|基于因果推断的图神经网络沥青路面车辙预测方法

基于因果推断的图神经网络沥青路面车辙预测方法

陈凯 王小荷 时欣利 曹进德

南通大学学报(自然科学版)2025,Vol.24Issue(1):18-27,50,11.
南通大学学报(自然科学版)2025,Vol.24Issue(1):18-27,50,11.DOI:10.12194/j.ntu.20240427001

基于因果推断的图神经网络沥青路面车辙预测方法

Causal inference-based graph neural network method for predicting asphalt pavement performance

陈凯 1王小荷 1时欣利 2曹进德3

作者信息

  • 1. 东南大学 网络空间安全学院,江苏 南京 211189
  • 2. 东南大学 网络空间安全学院,江苏 南京 211189||综合交通运输理论交通运输行业重点实验室(南京现代综合交通实验室),江苏 南京 211135
  • 3. 综合交通运输理论交通运输行业重点实验室(南京现代综合交通实验室),江苏 南京 211135||东南大学 数学学院,江苏 南京 211189
  • 折叠

摘要

Abstract

To enhance the prediction accuracy of asphalt pavement rutting,this study introduces an end-to-end multi-variate time series prediction model that integrates graph neural networks(GNN)with causal inference methodologies.The proposed model aims to effectively capture long-term and short-term temporal patterns as well as interdependencies among multiple variables.The model comprises four modules:global feature extraction,local feature extraction,causal inference,and dual-channel graph convolution.The global feature extraction module employs attention mechanisms and gated recurrent units(GRU)to capture long-term temporal dependencies within variables.The local feature extraction module utilizes dilated convolutional neural networks(CNN)with various kernel sizes to extract short-term temporal patterns at different scales.In the causal inference module,relationships among variables are identified using transfer entropy based on information theory,resulting in a relationship coefficient matrix that quantifies complex dependencies among variables.The dual-channel graph convolution module extends traditional low-pass graph convolutional neural networks by integrating a high-pass filter,simultaneously capturing low-frequency and high-frequency components of node signals or features to potentially improve prediction accuracy.The proposed approach was evaluated using the RIOHTrack dataset from the Research Institute of Highway Track,with comparisons conducted against several benchmark models,including the classical statistical model VARIMA,shallow learning model SVR,deep learning model GRU,attention mechanism-enhanced GRU,and TE-GCN.Experimental results indicate that the proposed model achieves superior predictive performance across various categories of asphalt pavement structures.Compared to traditional statistical models,deep learning-based models are more effective and stable,and the GRU module enhanced with attention mechanisms can capture long-term dependencies,further enhancing predictive performance.Overall,the proposed model provides a potentially effective solution for predicting asphalt pavement rutting and may offer practical insights for future pavement structure design and maintenance planning aimed at extending pavement lifespan.

关键词

因果推断/多元时间序列预测/双通图卷积神经网络/沥青路面/车辙

Key words

causal inference/multivariate time series prediction/dual-channel graph convolutional neural network/asphalt pavement/rutting

分类

计算机与自动化

引用本文复制引用

陈凯,王小荷,时欣利,曹进德..基于因果推断的图神经网络沥青路面车辙预测方法[J].南通大学学报(自然科学版),2025,24(1):18-27,50,11.

基金项目

国家重点研发计划项目(2020YFA0714300) (2020YFA0714300)

综合交通运输理论交通运输行业重点实验室(南京现代综合交通实验室)开放课题资助项目(MTF2023004) (南京现代综合交通实验室)

南通大学学报(自然科学版)

1673-2340

访问量0
|
下载量0
段落导航相关论文