| 注册
首页|期刊导航|人民珠江|基于CNN-BiLSTM-Attention的重力坝稳定时变安全系数预测模型

基于CNN-BiLSTM-Attention的重力坝稳定时变安全系数预测模型

曹宇鑫 张瀚 尹金超 李亚楠

人民珠江2025,Vol.46Issue(4):1-8,8.
人民珠江2025,Vol.46Issue(4):1-8,8.DOI:10.3969/j.issn.1001-9235.2025.04.001

基于CNN-BiLSTM-Attention的重力坝稳定时变安全系数预测模型

Prediction Model for Time-varying Safety Factor for Gravity Dam Stability Based on CNN-BiLSTM-Attention

曹宇鑫 1张瀚 1尹金超 1李亚楠1

作者信息

  • 1. 四川大学水力学与山区河流开发保护国家重点实验室,四川 成都 610065||四川大学水利水电学院,四川 成都 610065
  • 折叠

摘要

Abstract

Under complex working conditions such as high water pressure and high seepage pressure,accurately grasping the time-varying law of the safety factor of gravity dams and effectively predicting it are crucial for the scientific control of the dam's operation status.To this end,a coupled prediction model is proposed based on the CNN-BiLSTM-Attention method of deep learning theory,with the upstream water level,the riverward displacement at the dam crest,and time-dependent effects as independent variables,and the anti-sliding stability coefficient as the dependent variable.Through the analysis of a gravity dam project with a height of 148.0 meters,the model demonstrates a mean absolute error(MAE)and root mean square error(RMSE)of 1.12×10-3 and 1.66×10-3,respectively,prediction errors MAE and RMSE of 3.08×10-3 and 3.53×10-3,respectively.Compared to traditional statistical regression methods,this model has increased the prediction accuracy by 51.80%and 45.44%,and when compared to the SVM algorithm,the prediction accuracy has increased by 16.08%and 10.18%,respectively.This indicates that the proposed model has a better alignment with the finite element calculation result curves and a more remarkable advantage in prediction accuracy.

关键词

CNN-BiLSTM-Attention/重力坝/预警指标/预测模型

Key words

CNN-BiLSTM-Attention/gravity dam/early warning indicator/prediction model

分类

水利科学

引用本文复制引用

曹宇鑫,张瀚,尹金超,李亚楠..基于CNN-BiLSTM-Attention的重力坝稳定时变安全系数预测模型[J].人民珠江,2025,46(4):1-8,8.

基金项目

四川省科技厅重点研发项目(2022YFS0535) (2022YFS0535)

人民珠江

1001-9235

访问量0
|
下载量0
段落导航相关论文