| 注册
首页|期刊导航|河北地质大学学报|主成分分析在低孔低渗储层孔隙度预测中的应用研究

主成分分析在低孔低渗储层孔隙度预测中的应用研究

张雨辰 赵军龙 孙婧 崔文洁 陈家鑫 金利睿

河北地质大学学报2025,Vol.48Issue(2):21-31,11.
河北地质大学学报2025,Vol.48Issue(2):21-31,11.DOI:10.13937/j.cnki.hbdzdxxb.2025.02.003

主成分分析在低孔低渗储层孔隙度预测中的应用研究

Application of Principal Component Analysis in Porosity Prediction of Low Porosity and Low Permeability Reservoir

张雨辰 1赵军龙 1孙婧 1崔文洁 1陈家鑫 1金利睿1

作者信息

  • 1. 西安石油大学 地球科学与工程学院,陕西 西安 710065||陕西省油气成藏地质学重点实验室,陕西 西安 710065
  • 折叠

摘要

Abstract

In order to improve the accuracy of porosity prediction in low porosity and low permeability reservoirs and better serve the logging evaluation of low porosity and low permeability reservoirs,by combing the principle and properties of principal component analysis,combined with the common methods of machine learning and ensemble learning combination strategies,the idea of selective ensemble learning is proposed to construct a porosity prediction model based on principal component analysis.Firstly,the principal component analysis of the normalized logging curve data is carried out,and then the extracted principal components are used as the input attributes of four machine learning models:BP neural network,RF(random forest),XGBoost(extreme gradient boosting tree)and ridge regression.Finally,the optimization algorithm constructs an integrated model according to the specific gravity to predict the porosity.The research shows that the correlation coefficient R2 between the predicted value and the actual value of the porosity of the low porosity and low permeability reservoir is 0.948,and the prediction accuracy is higher,which is better than the single machine learning prediction model.It solves the problems of insufficient accuracy and poor generalization ability of traditional porosity prediction methods for low porosity and low permeability reservoirs,and lays a foundation for subsequent logging comprehensive evaluation of low porosity and low permeability reservoirs.

关键词

主成分分析法/孔隙度预测/集成学习/低孔低渗储层

Key words

principal component analysis/porosity prediction/integrated learning/low porosity and low permeability reservoir

分类

天文与地球科学

引用本文复制引用

张雨辰,赵军龙,孙婧,崔文洁,陈家鑫,金利睿..主成分分析在低孔低渗储层孔隙度预测中的应用研究[J].河北地质大学学报,2025,48(2):21-31,11.

基金项目

国家自然科学基金面上项目(42172164) (42172164)

河北地质大学学报

1007-6875

访问量0
|
下载量0
段落导航相关论文