| 注册
首页|期刊导航|综合智慧能源|基于传播模型与神经网络的输变电工程造价分析与预测方法研究

基于传播模型与神经网络的输变电工程造价分析与预测方法研究

陆汉东 方明 刘刚刚 周妍

综合智慧能源2025,Vol.47Issue(4):33-40,8.
综合智慧能源2025,Vol.47Issue(4):33-40,8.DOI:10.3969/j.issn.2097-0706.2025.04.003

基于传播模型与神经网络的输变电工程造价分析与预测方法研究

Research on cost analysis and prediction methods for power transmission and transformation projects based on propagation models and neural networks

陆汉东 1方明 1刘刚刚 2周妍2

作者信息

  • 1. 广东省电力建设定额站,广州 510600||广东电网有限责任公司 广州供电局,广州 510600
  • 2. 广东省电力建设定额站,广州 510600
  • 折叠

摘要

Abstract

Accurate prediction on the costs of transmission and substation projects is crucial for the planning and implementation of modern power systems.Traditional prediction methods often suffer from low accuracy and poor adaptability while handling quantitative prediction problems such as time series and structural analyses.To improve prediction accuracy,a cost prediction method for transmission and substation projects was proposed based on the Susceptible-Infected-Removed(SIR)epidemic model and neural networks.This method utilized the SIR model for dynamic modeling of variable costs,and fitted the model parameters with nonlinear least squares.Historical data and model parameters were then input into a Feedforward Neural Network(FNN),and predictions were obtained through training and computation.Finally,Bayesian optimization algorithm(BOA)was employed to optimize the hyperparameters of the FNN,completing the BOA-FNN model training.The study results indicated that this prediction method achieved a mean absolute percentage error(MAPE)as low as 0.430 7%,significantly enhancing prediction accuracy with stability and reliability.

关键词

输变电工程/工程造价/传染病模型/SIR模型/前馈神经网络/贝叶斯优化算法/工程投资预测

Key words

transmission and transformation engineering/project cost/epidemic model/SIR model/feedforward neural network(FNN)/Bayesian optimization algorithm(BOA)/project investment prediction

分类

能源科技

引用本文复制引用

陆汉东,方明,刘刚刚,周妍..基于传播模型与神经网络的输变电工程造价分析与预测方法研究[J].综合智慧能源,2025,47(4):33-40,8.

基金项目

南方电网定额站研究项目(2023-10-15) China Southern Power Grid Quota Station Project(2023-10-15) (2023-10-15)

综合智慧能源

2097-0706

访问量1
|
下载量0
段落导航相关论文