| 注册
首页|期刊导航|水力发电|基于ZOA-BiLSTM的重力坝变形预测模型

基于ZOA-BiLSTM的重力坝变形预测模型

黄建生 周站勇 林兴铖 黄之源 林舒婷 赵晨博

水力发电2025,Vol.51Issue(5):112-118,124,8.
水力发电2025,Vol.51Issue(5):112-118,124,8.

基于ZOA-BiLSTM的重力坝变形预测模型

Gravity Dam Deformation Prediction Model Based on ZOA-BiLSTM

黄建生 1周站勇 1林兴铖 1黄之源 1林舒婷 1赵晨博2

作者信息

  • 1. 华电福新周宁抽水蓄能有限公司,福建 宁德 355400
  • 2. 河海大学水利水电学院,江苏 南京 210024
  • 折叠

摘要

Abstract

To address the limitations in prediction accuracy inherent in traditional monitoring models for deformation prediction of concrete gravity dams,this study proposes a dam deformation prediction model based on the Zebra Optimization Algorithm(ZOA)and Bidirectional Long Short-Term Memory(BiLSTM)network.Initially,typical measurement point data within the deformation zone are selected.Subsequently,the hyperparameters of the model are iteratively optimized using the ZOA to enhance model performance.Finally,a high-precision prediction of concrete gravity dam deformation is achieved through the proposed ZOA-BiLSTM prediction workflow.Engineering case study demonstrates that the model's predictions align with the spatial distribution characteristics of dam deformation,offering a novel and effective methodology for monitoring the comprehensive safety status of dams.

关键词

变形预测/重力坝/HST/BiLSTM/ZOA

Key words

deformation prediction/gravity dam/HST/BiLSTM/ZOA

分类

建筑与水利

引用本文复制引用

黄建生,周站勇,林兴铖,黄之源,林舒婷,赵晨博..基于ZOA-BiLSTM的重力坝变形预测模型[J].水力发电,2025,51(5):112-118,124,8.

基金项目

国家自然科学基金资助项目(52309151) (52309151)

国家重点研发计划(2022YFC3005403) (2022YFC3005403)

水力发电

0559-9342

访问量0
|
下载量0
段落导航相关论文