| 注册
首页|期刊导航|水力发电学报|Kolmogorov-Arnold网络在长江中下游水位预报中的应用

Kolmogorov-Arnold网络在长江中下游水位预报中的应用

陈思宇 李肖男 花续 鲁军 荆平飞 宋志豪

水力发电学报2025,Vol.44Issue(4):97-107,11.
水力发电学报2025,Vol.44Issue(4):97-107,11.DOI:10.11660/slfdxb.20250410

Kolmogorov-Arnold网络在长江中下游水位预报中的应用

Application of Kolmogorov-Arnold networks to water level forecasting in middle and lower Yangtze River

陈思宇 1李肖男 2花续 3鲁军 2荆平飞 2宋志豪2

作者信息

  • 1. 清华大学 水圈科学与水利工程全国重点实验室,北京 100084
  • 2. 长江勘测规划设计研究有限责任公司,武汉 430010
  • 3. 江西赣能上高发电有限公司,江西 宜春 336000
  • 折叠

摘要

Abstract

A data-driven water level forecasting method is constructed using Kolmogorov-Arnold Networks(KAN),which decomposes the complex relationships among hydrological variables into a linear combination of univariate functions,enabling accurate capture of the trends in hydrological data.The method has been applied to water level forecasting based on discharge and water level data from the Lianhuatang and Shashi stations in the middle and lower Yangtze River.Results show the KAN model has a seven-day mean absolute error of 0.187 m at Lianhuatang and 0.109 m at Shashi.In the case of Lianhuatang,it improves forecasting accuracy by 20.1%,45.0%,16.5%,and 13.0%compared to traditional Multi-Layer Perceptron,Long Short-Term Memory network,Gated Recurrent Unit network,and Transformer models,respectively.To deepen our understanding of this model further,sensitivity analysis and simplification tests are conducted.Results indicate its short-term upstream discharge forecasting significantly affects the predicted downstream water levels.Equipped with a minimal number of parameters,it achieves effectively the relationship between upstream discharge and downstream water level changes,demonstrating remarkable interpretability.

关键词

水位预报/Kolmogorov-Arnold网络/机器学习/长江中游/可解释性

Key words

water level forecasting/Kolmogorov-Arnold networks/machine learning/middle reaches of the Yangtze River/interpretability

分类

水利科学

引用本文复制引用

陈思宇,李肖男,花续,鲁军,荆平飞,宋志豪..Kolmogorov-Arnold网络在长江中下游水位预报中的应用[J].水力发电学报,2025,44(4):97-107,11.

基金项目

国家重点研发计划项目(2022YFC3002705) (2022YFC3002705)

水力发电学报

OA北大核心

1003-1243

访问量4
|
下载量0
段落导航相关论文