| 注册
首页|期刊导航|数字中医药(英文)|TCMLCM:基于KG2TRAG方法的中医肺癌智能问答模型

TCMLCM:基于KG2TRAG方法的中医肺癌智能问答模型

周春芳 龚庆悦 詹文栋 朱金阳 栾慧丹

数字中医药(英文)2025,Vol.8Issue(1):36-45,10.
数字中医药(英文)2025,Vol.8Issue(1):36-45,10.DOI:10.1016/j.dcmed.2025.03.011

TCMLCM:基于KG2TRAG方法的中医肺癌智能问答模型

TCMLCM:an intelligent question-answering model for traditional Chinese medicine lung cancer based on the KG2TRAG method

周春芳 1龚庆悦 2詹文栋 3朱金阳 1栾慧丹1

作者信息

  • 1. 南京中医药大学人工智能与信息技术学院,江苏 南京 210023,中国
  • 2. 南京中医药大学人工智能与信息技术学院,江苏 南京 210023,中国||南京中医药大学江苏省智慧中医药健康服务工程研究中心,江苏 南京 210023,中国
  • 3. 北京理工大学生命学院,北京 100081,中国
  • 折叠

摘要

Abstract

Objective To improve the accuracy and professionalism of question-answering(QA)model in traditional Chinese medicine(TCM)lung cancer by integrating large language models with structured knowledge graphs using the knowledge graph(KG)to text-enhanced retrieval-augmented generation(KG2TRAG)method. Methods The TCM lung cancer model(TCMLCM)was constructed by fine-tuning Chat-GLM2-6B on the specialized datasets Tianchi TCM,HuangDi,and ShenNong-TCM-Dataset,as well as a TCM lung cancer KG.The KG2TRAG method was applied to enhance the knowl-edge retrieval,which can convert KG triples into natural language text via ChatGPT-aided lin-earization,leveraging large language models(LLMs)for context-aware reasoning.For a com-prehensive comparison,MedicalGPT,HuatuoGPT,and BenTsao were selected as the base-line models.Performance was evaluated using bilingual evaluation understudy(BLEU),re-call-oriented understudy for gisting evaluation(ROUGE),accuracy,and the domain-specific TCM-LCEval metrics,with validation from TCM oncology experts assessing answer accuracy,professionalism,and usability. Results The TCMLCM model achieved the optimal performance across all metrics,including a BLEU score of 32.15%,ROUGE-L of 59.08%,and an accuracy rate of 79.68%.Notably,in the TCM-LCEval assessment specific to the field of TCM,its performance was 3%-12%higher than that of the baseline model.Expert evaluations highlighted superior performance in accu-racy and professionalism. Conclusion TCMLCM can provide an innovative solution for TCM lung cancer QA,demon-strating the feasibility of integrating structured KGs with LLMs.This work advances intelli-gent TCM healthcare tools and lays a foundation for future AI-driven applications in tradi-tional medicine.

关键词

中医/肺癌/问答/大语言模型/微调/知识图谱/KG2TRAG方法

Key words

Traditional Chinese medicine(TCM)/Lung cancer/Question-answering/Large language model/Fine-tuning/Knowledge graph/KG2TRAG method

引用本文复制引用

周春芳,龚庆悦,詹文栋,朱金阳,栾慧丹..TCMLCM:基于KG2TRAG方法的中医肺癌智能问答模型[J].数字中医药(英文),2025,8(1):36-45,10.

基金项目

Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_2145). (KYCX24_2145)

数字中医药(英文)

2096-479X

访问量0
|
下载量0
段落导航相关论文