| 注册
首页|期刊导航|铜业工程|基于EffCD-YOLOv8的矿物检测识别技术研究

基于EffCD-YOLOv8的矿物检测识别技术研究

曾赫 肖罡 蔺永诚

铜业工程Issue(2):48-54,7.
铜业工程Issue(2):48-54,7.DOI:10.3969/j.issn.1009-3842.2025.02.006

基于EffCD-YOLOv8的矿物检测识别技术研究

Mineral Detection and Identification Technology Based on EffCD-YOLOv8

曾赫 1肖罡 2蔺永诚1

作者信息

  • 1. 中南大学机电工程学院,湖南 长沙 410083
  • 2. 中南大学机电工程学院,湖南 长沙 410083||江西铜业技术研究院有限公司,江西 南昌 330500
  • 折叠

摘要

Abstract

Due to the diversity of mineral types and the large quantity of minerals mined at one time,using visual recognition technolo-gy for classification often leads to missed and incorrect detections.To achieve accurate recognition,annotation,and classification of minerals,this paper proposes EffCD-YOLOv8 algorithm based on YOLOv8 network structure.The algorithm integrates EfficientNetv2 module into the backbone network,enhancing detection accuracy while maintaining training speed.CCFF module is incorporated into the neck to achieve cross-scale feature fusion,and DBB module is utilized in the head to process objects across different spatial scales,enabling more precise recognition,annotation,and classification.The results demonstrate that EffCD-YOLOv8 model achieves a recog-nition accuracy of 83.2%on a custom mineral dataset,outperforming the original YOLOv8 algorithm and effectively enabling accurate recognition,annotation,and classification of minerals.

关键词

矿石分类/YOLOv8/视觉识别技术/目标检测

Key words

ore classification/YOLOv8/visual recognition technology/target detection

分类

冶金工业

引用本文复制引用

曾赫,肖罡,蔺永诚..基于EffCD-YOLOv8的矿物检测识别技术研究[J].铜业工程,2025,(2):48-54,7.

基金项目

国家重点研发计划项目(2023YFC3904200) (2023YFC3904200)

江西省自然科学基金项目(20224ACB218002) (20224ACB218002)

江西省重大科技研发专项项目(20232ACE01010)资助 (20232ACE01010)

铜业工程

1009-3842

访问量0
|
下载量0
段落导航相关论文