| 注册
首页|期刊导航|西安工程大学学报|深度强化学习下的管道气动软体机器人控制

深度强化学习下的管道气动软体机器人控制

江雨霏 朱其新

西安工程大学学报2025,Vol.39Issue(2):65-74,10.
西安工程大学学报2025,Vol.39Issue(2):65-74,10.DOI:10.13338/j.issn.1674-649x.2025.02.008

深度强化学习下的管道气动软体机器人控制

Pipe pneumatic soft robot control based on deep reinforcement learning

江雨霏 1朱其新2

作者信息

  • 1. 苏州科技大学 电子与信息工程学院,江苏 苏州 215009
  • 2. 苏州科技大学 机械工程学院,江苏 苏州 215009||江苏省智能共融机器人工程研究中心,江苏 苏州 215009||苏州市共融机器人技术重点实验室,江苏 苏州 215009
  • 折叠

摘要

Abstract

In complex pipeline environments,soft robots are more suitable for operational tasks compared to rigid robots.However,due to their infinite degrees of freedom and nonlinear de-formation characteristics,the control of soft robots posed a significant challenge.To address the dynamic bending motion control of pipe pneumatic soft,a dynamic model was developed based on their deformation characteristics,and a predictive reward-deep deterministic policy gradient(PR-DDPG)algorithm was proposed.This algorithm was applied to achieve continuous motion con-trol,enabling the design of an autonomous motion controller for dynamic bending.The experi-mental results demonstrate that the PR-DDPG algorithm effectively controls the autonomous con-tinuous motion of pipe pneumatic soft in three-dimensional space,allowing their front ends to reach target positions and orientations.Compared with the deep deterministic policy gradient(DDPG)algorithm,the convergence time of PR-DDPG is reduced by approximately 17%,and the reward value is improved by about 20%.The PR-DDPG algorithm improves the continuous motion control capabilities of pipe pneumatic soft.

关键词

管道软体机器人/运动控制/深度强化学习/深度确定性策略梯度算法

Key words

pipeline soft robot/motion control/deep reinforcement learning/depth deterministic policy gradient algorithm

分类

机械工程

引用本文复制引用

江雨霏,朱其新..深度强化学习下的管道气动软体机器人控制[J].西安工程大学学报,2025,39(2):65-74,10.

基金项目

国家自然科学基金项目(51875380,62063010,51375323) (51875380,62063010,51375323)

苏州市科技发展计划(关键核心技术"揭榜挂帅")项目(SYG2024148) (关键核心技术"揭榜挂帅")

苏州市科技计划(基础研究)项目(SJC2023002) (基础研究)

西安工程大学学报

1674-649X

访问量0
|
下载量0
段落导航相关论文