| 注册
首页|期刊导航|现代信息科技|基于XGBoost的肥胖水平综合预测与SHAP模型解释分析

基于XGBoost的肥胖水平综合预测与SHAP模型解释分析

黄东升

现代信息科技2025,Vol.9Issue(7):40-46,7.
现代信息科技2025,Vol.9Issue(7):40-46,7.DOI:10.19850/j.cnki.2096-4706.2025.07.008

基于XGBoost的肥胖水平综合预测与SHAP模型解释分析

Comprehensive Prediction of Obesity Level Based on XGBoost and Explanatory Analysis of SHAP Model

黄东升1

作者信息

  • 1. 福州大学 数学与统计学院,福建 福州 350108
  • 折叠

摘要

Abstract

This paper aims to use the XGBoost model to predict obesity levels and explain the contribution of various features to obesity risk through the SHAP method,so as to identify key influencing factors and provide a scientific basis for obesity prevention.Modeling is conducted based on multiple features such as family history of obesity,dietary habits,and frequency of physical activity.XGBoost is used to predict obesity levels,and SHAP values are applied to analyze the impact of each feature on the model output,to explain the contribution of each feature to obesity classification.Family history of obesity,age,and dietary habits are key factors affecting obesity.SHAP analysis further reveals the specific contributions and impact of these factors on obesity classification.By combining the efficient predictive ability of XGBoost and the explanatory analysis of SHAP,this research not only identifies the key features that affect obesity,but also provides a scientific basis for personalized health management and obesity prevention,demonstrating the application potential of Machine Learning in the field of public health.

关键词

SHAP/XGBoost/大数据/肥胖水平/健康管理

Key words

SHAP/XGBoost/Big Data/obesity level/health management

分类

信息技术与安全科学

引用本文复制引用

黄东升..基于XGBoost的肥胖水平综合预测与SHAP模型解释分析[J].现代信息科技,2025,9(7):40-46,7.

现代信息科技

2096-4706

访问量0
|
下载量0
段落导航相关论文