| 注册
首页|期刊导航|现代信息科技|基于TimeGAN的轨道交通LTE-M故障预测研究

基于TimeGAN的轨道交通LTE-M故障预测研究

余凤琴 邹劲柏 沙宏

现代信息科技2025,Vol.9Issue(8):10-15,6.
现代信息科技2025,Vol.9Issue(8):10-15,6.DOI:10.19850/j.cnki.2096-4706.2025.08.003

基于TimeGAN的轨道交通LTE-M故障预测研究

Research on LTE-M Fault Prediction of Rail Transit Based on TimeGAN

余凤琴 1邹劲柏 1沙宏2

作者信息

  • 1. 上海应用技术大学 轨道交通学院,上海 201418
  • 2. 上海地铁维护保障有限公司通号分公司,上海 200235
  • 折叠

摘要

Abstract

The Long Term Evolution of Metro(LTE-M)network fault prediction dataset of rail transit has the problems of unbalanced samples and small amount of sample data,which impact the accuracy of fault prediction.In order to solve the above problems,this paper proposes a research method of LTE-M fault prediction of rail transit based on conditional Time-series Generative Adversarial Networks(TimeGAN).By defining dynamic autoencoder and static autoencoder in TimeGAN model,this method further explores the dynamic and static characteristics of LTE-M fault data of rail transit,and introduces GELU activation function in the potential space of generator and discriminator to accelerate model convergence and generate synthetic data closer to real data,thus effectively alleviating the problem of unbalanced fault dataset and small data volume.The experimental results show that when the data synthesized by the TimeGAN model is used for fault prediction training,it can produce better prediction results than the original data.

关键词

轨道交通LTE-M/故障预测/时间序列/TimeGAN

Key words

rail transit LTE-M/fault prediction/time-series/TimeGAN

分类

信息技术与安全科学

引用本文复制引用

余凤琴,邹劲柏,沙宏..基于TimeGAN的轨道交通LTE-M故障预测研究[J].现代信息科技,2025,9(8):10-15,6.

基金项目

轨道交通智能运维关键技术研究项目(20090503100) (20090503100)

"一带一路"中老铁路工程国际联合实验室(21210750300) (21210750300)

现代信息科技

2096-4706

访问量0
|
下载量0
段落导航相关论文