基于改进YOLOv11的水果成熟度检测OA
Fruit Ripeness Detection Based on Improved YOLOv11
针对水果成熟度检测中存在的精度不足、复杂背景下识别难度大,传统方法在特征提取上表现出明显的局限性等问题,为此,提出了一种基于改进YOLOv11 的水果成熟度检测算法(AGLU-YOLOv11),以满足水果成熟度检测中对数据高效、可靠采集的需求.AGLU-YOLOv11 通过优化YOLOv11 主干网络中的C3k2 模块,融合CATM(Conv Additive Self-Attention)与CGLU(Convolutional Gated Linear Unit)设计了C3k2_AddBlock_CGLU模块,显著提升特征提取能力及多品种、多阶段成熟度果实的适应性.同时,在特征融合阶段引入AFCA注意力机制,强化全局特征表达及复杂背景的适应性,实现高效水果质量检测与标注.实验结果表明,AGLU-YOLOv11 在Precision、Recall、mAP@0.5 和mAP@0.5:0.95 指标上相比其他检测模型,在精度、鲁棒性和多尺度目标适应性上表现更优,能够更好地满足识别水果成熟度的需求.
Aiming at the existing problems of insufficient accuracy,the difficulty of identification under complex backgrounds,and the obvious limitations of traditional methods in feature extraction in fruit ripeness detection,a fruit ripeness detection algorithm(AGLU-YOLOv11)based on improved YOLOv11 is proposed,to meet the demands for efficient data and reliable collection in fruit ripeness detection.AGLU-YOLOv11 designs the C3k2_AddBlock_CGLU module by optimizing the C3k2 module in the YOLOv11 backbone network and integrating CATM(Conv Additive Self-Attention)and CGLU(Convolutional Gated Linear Unit),and significantly enhances feature extraction capability and adaptability of multi-variety and multi-stage ripeness fruits.At the same time,the AFCA Attention Mechanism is introduced in the feature fusion stage to strengthen global feature expression and adaptability to complex backgrounds,and achieve efficient fruit quality detection and labeling.Experimental results show that AGLU-YOLOv11 performs better in precision,robustness and multi-scale object adaptability than other detection models in Precision,Recall,mAP@0.5 and mAP@0.5:0.95 indicators,and can better meet the demands for identifying fruit ripeness.
赵鹏;强光磊;卢波;高扬;张仟祥
太原师范学院 计算机科学与技术学院,山西 晋中 030619||智能优化计算与区块链技术山西省重点实验室,山西 晋中 030619太原师范学院 计算机科学与技术学院,山西 晋中 030619||智能优化计算与区块链技术山西省重点实验室,山西 晋中 030619太原师范学院 计算机科学与技术学院,山西 晋中 030619||智能优化计算与区块链技术山西省重点实验室,山西 晋中 030619太原师范学院 计算机科学与技术学院,山西 晋中 030619||智能优化计算与区块链技术山西省重点实验室,山西 晋中 030619太原师范学院 计算机科学与技术学院,山西 晋中 030619||智能优化计算与区块链技术山西省重点实验室,山西 晋中 030619
计算机与自动化
YOLO目标检测CGLUCATM水果成熟度检测
YOLOObject DetectionCGLUCATMfruit ripeness detection
《现代信息科技》 2025 (8)
34-40,7
山西省科技战略研究专项重点项目(202304031401011)
评论