| 注册
首页|期刊导航|现代信息科技|基于改进YOLOv11的水果成熟度检测

基于改进YOLOv11的水果成熟度检测

赵鹏 强光磊 卢波 高扬 张仟祥

现代信息科技2025,Vol.9Issue(8):34-40,7.
现代信息科技2025,Vol.9Issue(8):34-40,7.DOI:10.19850/j.cnki.2096-4706.2025.08.008

基于改进YOLOv11的水果成熟度检测

Fruit Ripeness Detection Based on Improved YOLOv11

赵鹏 1强光磊 1卢波 1高扬 1张仟祥1

作者信息

  • 1. 太原师范学院 计算机科学与技术学院,山西 晋中 030619||智能优化计算与区块链技术山西省重点实验室,山西 晋中 030619
  • 折叠

摘要

Abstract

Aiming at the existing problems of insufficient accuracy,the difficulty of identification under complex backgrounds,and the obvious limitations of traditional methods in feature extraction in fruit ripeness detection,a fruit ripeness detection algorithm(AGLU-YOLOv11)based on improved YOLOv11 is proposed,to meet the demands for efficient data and reliable collection in fruit ripeness detection.AGLU-YOLOv11 designs the C3k2_AddBlock_CGLU module by optimizing the C3k2 module in the YOLOv11 backbone network and integrating CATM(Conv Additive Self-Attention)and CGLU(Convolutional Gated Linear Unit),and significantly enhances feature extraction capability and adaptability of multi-variety and multi-stage ripeness fruits.At the same time,the AFCA Attention Mechanism is introduced in the feature fusion stage to strengthen global feature expression and adaptability to complex backgrounds,and achieve efficient fruit quality detection and labeling.Experimental results show that AGLU-YOLOv11 performs better in precision,robustness and multi-scale object adaptability than other detection models in Precision,Recall,mAP@0.5 and mAP@0.5:0.95 indicators,and can better meet the demands for identifying fruit ripeness.

关键词

YOLO/目标检测/CGLU/CATM/水果成熟度检测

Key words

YOLO/Object Detection/CGLU/CATM/fruit ripeness detection

分类

信息技术与安全科学

引用本文复制引用

赵鹏,强光磊,卢波,高扬,张仟祥..基于改进YOLOv11的水果成熟度检测[J].现代信息科技,2025,9(8):34-40,7.

基金项目

山西省科技战略研究专项重点项目(202304031401011) (202304031401011)

现代信息科技

2096-4706

访问量6
|
下载量0
段落导航相关论文