| 注册
首页|期刊导航|现代信息科技|基于物理混合神经网络的涡流管性能研究

基于物理混合神经网络的涡流管性能研究

李申申 韩志宏 刘蜀阳 黄志远 甘德俊

现代信息科技2025,Vol.9Issue(8):194-198,5.
现代信息科技2025,Vol.9Issue(8):194-198,5.DOI:10.19850/j.cnki.2096-4706.2025.08.036

基于物理混合神经网络的涡流管性能研究

Research on the Performance of Vortex Tube Based on Physical Hybrid Neural Network

李申申 1韩志宏 2刘蜀阳 2黄志远 1甘德俊1

作者信息

  • 1. 景德镇陶瓷大学 机械电子工程学院,江西 景德镇 333403
  • 2. 莆田学院 新工科产业学院,福建 莆田 351100
  • 折叠

摘要

Abstract

In this paper,a hybrid neural network model is constructed by adding the physical constraint conditions of the Bernoulli equation and the Nicolas formula,exploring the temperature change law of the cold end of the vortex tube and making corresponding predictions.The network adopts a multi-layer feedforward model and the Levenberg-Marquardt learning algorithm,and the hyperbolic tangent function is selected as the transfer function.In addition,the coefficient of determination(R2)and the Root Mean Square Error(RMSE)are used to determine the statistical validity of the developed model,and the model's uncertainty and robustness are analyzed.The hybrid model has an index R2 of 0.993 6 and an RMSE of 0.339 2,and also has a good performance in terms of uncertainty and robustness.These data indicate that the model constructed in this paper successfully predicts the changes in the temperature of the cold end of the vortex tube and has good accuracy.

关键词

涡流管/预测模型/混合神经网络/温度性能

Key words

vortex tube/predictive model/hybrid neural network/temperature performance

分类

信息技术与安全科学

引用本文复制引用

李申申,韩志宏,刘蜀阳,黄志远,甘德俊..基于物理混合神经网络的涡流管性能研究[J].现代信息科技,2025,9(8):194-198,5.

基金项目

国家自然科学基金(52066006) (52066006)

景德镇市科技局项目(2019GYZD008-13) (2019GYZD008-13)

现代信息科技

2096-4706

访问量3
|
下载量0
段落导航相关论文