| 注册
首页|期刊导航|移动通信|基于深度强化学习的多功能超表面辅助无蜂窝网络资源分配

基于深度强化学习的多功能超表面辅助无蜂窝网络资源分配

王雯 倪万里 魏昊 张铖 黄永明

移动通信2025,Vol.49Issue(4):20-27,8.
移动通信2025,Vol.49Issue(4):20-27,8.DOI:10.3969/j.issn.1006-1010.20250109-0002

基于深度强化学习的多功能超表面辅助无蜂窝网络资源分配

Deep Reinforcement Learning-Based Resource Allocation for Multi-Functional RIS-Assisted Cell-Free Networks

王雯 1倪万里 2魏昊 3张铖 1黄永明1

作者信息

  • 1. 紫金山实验室,江苏 南京 211111||东南大学信息科学与工程学院,江苏 南京 210096
  • 2. 清华大学电子工程系,北京 100084
  • 3. 北京邮电大学人工智能学院,北京 100876
  • 折叠

摘要

Abstract

In recent years,the emerging cell-free network architecture has eliminated cell boundaries defined by time-frequency resources,thereby enhancing spectrum utilization,system coverage,and user fairness.It is regarded as a potential key technology for the sixth-generation mobile communications.However,implementing such an architecture typically requires the large-scale deployment of access points(APs),resulting in high system costs and power consumption.Moreover,the achievable performance of cell-free networks is often constrained by dynamic and uncontrollable signal propagation environments.To address these issues,this paper introduces the multi-functional reconfigurable intelligent surface(MF-RIS)into cell-free networks.By simultaneously reflecting,refracting,and amplifying incident signals,MF-RIS can reconfigure the wireless propagation environment of cell-free networks in an effective manner.To maximize the minimum achievable rate at the user side,this paper formulates a joint scheduling problem involving AP beamforming,and MF-RIS mode selection and coefficient optimization.To solve this mixed-integer nonlinear programming problem,this paper proposes a dual-agent algorithm based on deep reinforcement learning,where one agent determines the operating mode of MF-RIS elements,and the other designs the beamforming at APs and MF-RIS coefficients based on the selected modes.Simulation results demonstrate the effectiveness of the proposed algorithm.

关键词

多功能超表面/无蜂窝网络/深度强化学习/资源管理

Key words

multi-functional reconfigurable intelligent surface/cell-free network/deep reinforcement learning/resource management

分类

电子信息工程

引用本文复制引用

王雯,倪万里,魏昊,张铖,黄永明..基于深度强化学习的多功能超表面辅助无蜂窝网络资源分配[J].移动通信,2025,49(4):20-27,8.

基金项目

国家资助博士后研究人员计划(GZB20240386) (GZB20240386)

中国博士后科学基金资助项目(2024M761669) (2024M761669)

北京邮电大学博士研究生创新基金项目(CX2023110) (CX2023110)

国家自然科学基金面上项目(62271140) (62271140)

江苏省优秀青年科学基金项目(BK20240174) (BK20240174)

移动通信

1006-1010

访问量0
|
下载量0
段落导航相关论文