| 注册
首页|期刊导航|中国电机工程学报|融合机器学习-优化的配电网低碳运行方法

融合机器学习-优化的配电网低碳运行方法

桑林卫 许银亮 孙宏斌 吴文传

中国电机工程学报2025,Vol.45Issue(8):2855-2864,中插1,11.
中国电机工程学报2025,Vol.45Issue(8):2855-2864,中插1,11.DOI:10.13334/j.0258-8013.pcsee.232246

融合机器学习-优化的配电网低碳运行方法

Carbon-aware Distribution Network Operation Approach via Fusing Learning and Optimization

桑林卫 1许银亮 1孙宏斌 2吴文传3

作者信息

  • 1. 清华大学深圳国际研究生院,广东省 深圳市 518000
  • 2. 山西省能源互联网研究院,山西省 太原市 030000
  • 3. 清华大学电机工程与应用电子技术系,北京市 海淀区 100084
  • 折叠

摘要

Abstract

With the extensive integration of distributed resources into the distribution network,the operational management of the distribution system becomes pivotal to ensure its reliability,safety,and efficient operation.The intricate interplay between the distribution network and distributed resources introduces complexity,manifesting in the intricate response of distributed resources to system incentive,thereby rendering their unified management challenging.In addressing this issue,leveraging machine learning and optimization theories,this study firstly proposes a constraint learning approach tailored to clusters of distributed resources.This involves establishing a data-driven response constraint model based on neural networks.Subsequently,the fusing learning and optimization for distribution network operation framework is formulated through the lens of constraint learning.Based on the constraint model,carbon emission limitations,distribution network operational model,and bilinear relaxation strategies,an amalgamated machine learning and optimization-based distribution network operational model is constructed.This model not only ensures the secure and economical operation of the distribution system but also addresses carbon emission management.A comprehensive case study validates both the accuracy of cluster learning for distributed resource integration and the efficacy of the combined machine learning-optimization approach for distribution network operation modeling.

关键词

机器学习/神经网络/配电网/低碳运行

Key words

machine learning/neural networks/distribution network/carbon-aware operation

分类

动力与电气工程

引用本文复制引用

桑林卫,许银亮,孙宏斌,吴文传..融合机器学习-优化的配电网低碳运行方法[J].中国电机工程学报,2025,45(8):2855-2864,中插1,11.

基金项目

国家重点研发计划项目(2021YFB1507100) (2021YFB1507100)

山西省能源互联网研究院研发项目(SXEI2023B004).National Key R&D Program of China(2021YFB1507100) (SXEI2023B004)

R&D Project of Shanxi Energy Internet Research Institute(SXEI2023B004). (SXEI2023B004)

中国电机工程学报

OA北大核心

0258-8013

访问量27
|
下载量0
段落导航相关论文