| 注册
首页|期刊导航|中南民族大学学报(自然科学版)|基于深度学习的频高图自动标定

基于深度学习的频高图自动标定

朱正平 邢蕴辉

中南民族大学学报(自然科学版)2025,Vol.44Issue(4):497-506,10.
中南民族大学学报(自然科学版)2025,Vol.44Issue(4):497-506,10.DOI:10.20056/j.cnki.ZNMDZK.20250409

基于深度学习的频高图自动标定

Ionogram automatic scaling based on Deep-learning

朱正平 1邢蕴辉1

作者信息

  • 1. 中南民族大学 电子信息工程学院,武汉 430074
  • 折叠

摘要

Abstract

Ionogram is the conventional data of ionospheric sounding by ionosonde on the ground.The amount of data is large.Various parameters of the ionosphere need to be scaled one by one to obtain.Traditionally,manual scaling is required but it is time-consuming,laborious and error-prone.It is imperative to realize computer-assisted manual scaling potential.Herein a deep-learning method for ionogram automatic scaling(DIAS)is presented,and the method is based on the U-shaped structure and using the characteristic pyramid with horizontal connection as the connection,using the data of manual scaling to generate the model sample data,and then randomly select part of the data as the training data input,so that the predicted value of the model gradually approaches the true value by constantly updating the parameters.The results show that compared with Automatic Real-Time Ionogram Scaling with True-height(ARTIST),the accuracy and recall rate of DIAS are improved by 8%and 17%respectively,and the results of DIAS are similar to those of manual scaling.This results shows that ionograms provided by deep-learning method can be applied to real-time global ionospheric weather nowcasting.

关键词

频高图标定/深度学习/电离层测高仪/电离层

Key words

ionogram scaling/deep-learning/ionosonde/ionosphere

分类

地球科学

引用本文复制引用

朱正平,邢蕴辉..基于深度学习的频高图自动标定[J].中南民族大学学报(自然科学版),2025,44(4):497-506,10.

基金项目

国家自然科学基金资助项目(41474135) (41474135)

中南民族大学学报(自然科学版)

1672-4321

访问量2
|
下载量0
段落导航相关论文