| 注册
首页|期刊导航|北京林业大学学报|MAFF-YOLO:面向造林验收的明穴目标检测模型

MAFF-YOLO:面向造林验收的明穴目标检测模型

石燕妮 王武魁 吴明晶 张大兴 廉瑞峰 谷亚宇

北京林业大学学报2025,Vol.47Issue(4):142-154,13.
北京林业大学学报2025,Vol.47Issue(4):142-154,13.DOI:10.12171/j.1000-1522.20240353

MAFF-YOLO:面向造林验收的明穴目标检测模型

MAFF-YOLO:a target detection model for planting holes in afforestation acceptance

石燕妮 1王武魁 1吴明晶 2张大兴 2廉瑞峰 1谷亚宇1

作者信息

  • 1. 北京林业大学经济管理学院,北京 100083
  • 2. 福建省将乐国有林场,福建三明 353300
  • 折叠

摘要

Abstract

[Objective]To solve the problems like strong subjectivity,lack of scientific basis,and insufficient personnel in traditional afforestation acceptance,this paper proposes an afforestation hole detection model of MAFF-YOLO.It aims to automatically identify and count the number and location of afforestation holes,promoting the digital transformation of afforestation acceptance and improving efficiency and scientific accuracy.[Method]Based on the YOLOv8 model,MAFF-YOLO was obtained through multiple improvements.First,it used MobileNetV4 as the backbone network to increase parameters and layers,enhancing detection accuracy.Second,it added a normalization-based attention module(NAM)to better capture hole features and reduce false detections.Third,it replaced the feature fusion module with a cross-scale feature fusion module(CCFM),which integrated features of different scales and reduced computational load,improving detection of small holes.Fourth,it replaced the detection head with an RFAHead,which dynamically adjusted the receptive field based on data complexity and importance,thereby enhancing adaptability to different input features.Finally,the bounding box loss function was optimized to FocusCIoU to address sample imbalance and improve learning capability for key samples.[Result]MAFF-YOLO demonstrated high accuracy in identifying the number and location of planting holes.Compared with basic YOLOv8 model,its precision increased by 1 percentage point,mAP50 by 0.7 percentage points,and F0.5 by 0.6 percentage points.Moreover,the algorithm complexity was significantly reduced.[Conclusion]Under the same experimental conditions,MAFF-YOLO shows significant advantages over other existing methods in improving the detection performance of afforestation holes.It has been successfully integrated into an end-to-end detection system,providing effective technical support for the digitalization of afforestation acceptance and further enhancing the efficiency and scientific nature of the acceptance process.

关键词

小目标检测/YOLOv8/算法/数字化造林验收/无人机/MobileNetV4/NAM/CCFM

Key words

small object detection/YOLOv8/algorithms/digital afforestation acceptance/unmanned aerial vehicles(UAV)/MobileNetV4/NAM/CCFM

分类

农业科技

引用本文复制引用

石燕妮,王武魁,吴明晶,张大兴,廉瑞峰,谷亚宇..MAFF-YOLO:面向造林验收的明穴目标检测模型[J].北京林业大学学报,2025,47(4):142-154,13.

基金项目

城市科技与精细化管理项目(Z221100005222108),福建省将乐国有林场基于无人机影像的造林监管自动化系统研建(20220517). (Z221100005222108)

北京林业大学学报

OA北大核心

1000-1522

访问量4
|
下载量0
段落导航相关论文