| 注册
首页|期刊导航|吉林大学学报(信息科学版)|基于改进GAN算法的文本匹配生成图像模型

基于改进GAN算法的文本匹配生成图像模型

徐熠玮 陈刚

吉林大学学报(信息科学版)2025,Vol.43Issue(2):258-264,7.
吉林大学学报(信息科学版)2025,Vol.43Issue(2):258-264,7.

基于改进GAN算法的文本匹配生成图像模型

Text Matching Image Generation Model Based on Improved GAN Algorithm

徐熠玮 1陈刚2

作者信息

  • 1. 浙江工商大学萨塞克斯人工智能学院,杭州 310018
  • 2. 武汉大学国际网络安全学院,武汉 430072
  • 折叠

摘要

Abstract

In order to effectively improve the visual effect and matching degree of text matching generated images,a text matching generated image model based on improved GAN(Generating Adversarial Networks)algorithm is proposed.Initial matching of text and images are unfolded through a mixed index tree.On the basis of GAN,they are improved to form an adversarial generation network based on cross attention mechanism encoding,and the improved GAN is used to establish a text matching image generation model.The cross attention encoder in the bidirectional LSTM(Long Short-Term Memory)network optimization model is used to translate and align text and visual information,obtaining cross modal mapping relationships between text and images,completing fine matching between text and images,and ultimately generating images that meet the requirements of the text.The experimental results show that the proposed model can generate images with higher quality that match image details with text.

关键词

改进GAN算法/文本匹配/生成图像模型

Key words

improved generating adversarial networks(GAN)algorithm/text matching/image generation model

分类

信息技术与安全科学

引用本文复制引用

徐熠玮,陈刚..基于改进GAN算法的文本匹配生成图像模型[J].吉林大学学报(信息科学版),2025,43(2):258-264,7.

基金项目

湖北省自然科学基金资助项目(2021CFB299) (2021CFB299)

吉林大学学报(信息科学版)

1671-5896

访问量0
|
下载量0
段落导航相关论文