| 注册
首页|期刊导航|测井技术|基于ADASVRLGBM的致密气藏产能预测

基于ADASVRLGBM的致密气藏产能预测

孟思海 张占松 郭建宏 韩子浩 曾伟杰 吕恒阳

测井技术2025,Vol.49Issue(2):235-243,9.
测井技术2025,Vol.49Issue(2):235-243,9.DOI:10.16489/j.issn.1004-1338.2025.02.011

基于ADASVRLGBM的致密气藏产能预测

Production Capacity Prediction for Tight Gas Reservoirs Based on ADASVRLGBM

孟思海 1张占松 1郭建宏 1韩子浩 1曾伟杰 1吕恒阳1

作者信息

  • 1. 油气资源与勘探技术教育部重点实验室(长江大学),湖北 武汉 430100||长江大学地球物理与石油资源学院,湖北 武汉 430100
  • 折叠

摘要

Abstract

Accurate production capacity prediction plays a crucial role in formulating efficient development plans for tight gas reservoirs.Due to the complexity of tight gas reservoir characteristics and significant reservoir heterogeneity,traditional prediction methods often fail to meet the accuracy and stability requirements in practical applications.This paper proposes an innovative production capacity prediction model,ADASVRLGBM,which integrates AdaBoost(Adaptive Boosting),SVR(Support Vector Regression),and LGBM(Light Gradient Boosting Machine)algorithms.The model utilizes GridSearchCV(Grid Search Cross-Validation)to fine-tune the hyperparameters of each algorithm and applies a genetic algorithm to optimize the weight combinations of the sub-models.The integrated model systematically analyzes the correlation of factors influencing tight gas production,extracts key feature parameters,and builds a predictive model with gas well production capacity as the output label.The study demonstrates that the integrated model significantly outperforms single algorithms in terms of prediction accuracy,achieving an average agreement rate of 93.33%after training.Furthermore,the paper provides an in-depth discussion of the contributions of different sub-models to overall prediction performance and highlights their advantages in handling complex data.The findings offer theoretical and practical support for the efficient development of tight gas reservoirs and valuable insights for extending the application of similar models.

关键词

致密气藏/产能预测/集成算法/遗传算法/机器学习

Key words

tight gas reservoir/production capacity prediction/ensemble algorithm/genetic algorithm/machine learning

引用本文复制引用

孟思海,张占松,郭建宏,韩子浩,曾伟杰,吕恒阳..基于ADASVRLGBM的致密气藏产能预测[J].测井技术,2025,49(2):235-243,9.

基金项目

国家自然科学基金项目"致密气储层岩石导电机理研究及饱和度评价"(41404084) (41404084)

油气资源与勘探技术教育部重点实验室开放基金项目"复杂孔隙型碳酸盐岩饱和度评价与应用研究"(K2023-02) (K2023-02)

测井技术

1004-1338

访问量0
|
下载量0
段落导航相关论文