| 注册
首页|期刊导航|电波科学学报|基于深度学习的雷达有源干扰开集识别和未知干扰聚类方法

基于深度学习的雷达有源干扰开集识别和未知干扰聚类方法

关中意 兰岚 朱圣棋 李西敏 康梦特

电波科学学报2025,Vol.40Issue(2):261-275,15.
电波科学学报2025,Vol.40Issue(2):261-275,15.DOI:10.12265/j.cjors.2024118

基于深度学习的雷达有源干扰开集识别和未知干扰聚类方法

Deep learning-based radar active jamming open set recognition and unknown jamming clustering methods

关中意 1兰岚 1朱圣棋 1李西敏 1康梦特2

作者信息

  • 1. 西安电子科技大学 雷达信号处理全国重点实验室,西安 710071
  • 2. 中国人民解放军 95885 部队,西安 710089
  • 折叠

摘要

Abstract

To address the problem of radar recognition of unknown types of active jamming in complex electromagnetic environments,a deep learning-based radar active jamming open-set recognition and unknown jamming clustering method is proposed.First,a radar active jamming recognition network based on multi-layer channel attention mechanism is designed by introducing residual module,Inception module,and attention mechanism module;second,the time-frequency map and Range-Doppler map of jamming signals are used to form two input branches,and the relative entropy is obtained according to the respective recognition probability distributions as the confidence of the recognition results,and through the recognition of the probability distribution of the maximum index and the relative entropy The threshold is set by the voting of the maximum index of the recognition probability distribution and the relative entropy,which realizes the open-set recognition of the unknown type of jamming;finally,the data adaptive spatial clustering algorithm is designed by analyzing the feature principal components obtained from the mapping of the deep learning network,downsizing and extracting the feature parameters that account for more than 95%of the total number of features,and realizing the clustering of the unknown type of jamming.The simulation data classify 14 types of jamming signals into 8 types of known jamming and 6 types of unknown jamming,and can realize more than 91.4%of active jamming open set recognition and effective clustering of unknown jamming under the condition that the jamming noise ratio is more than 5 dB.

关键词

雷达有源干扰识别/深度学习/开集识别/干扰聚类

Key words

radar active jamming recognition/deep learning/open set recognition/jamming clustering

分类

信息技术与安全科学

引用本文复制引用

关中意,兰岚,朱圣棋,李西敏,康梦特..基于深度学习的雷达有源干扰开集识别和未知干扰聚类方法[J].电波科学学报,2025,40(2):261-275,15.

基金项目

国家自然科学基金(62471348,62101402) (62471348,62101402)

陕西省科技创新团队项目(2022TD-38) (2022TD-38)

电波科学学报

OA北大核心

1005-0388

访问量0
|
下载量0
段落导航相关论文