| 注册
首页|期刊导航|电器与能效管理技术|基于敏感气象特征因子筛选与PSO-SVM模型优化的新能源功率预测特性研究

基于敏感气象特征因子筛选与PSO-SVM模型优化的新能源功率预测特性研究

巩伟峥

电器与能效管理技术Issue(3):38-45,8.
电器与能效管理技术Issue(3):38-45,8.DOI:10.16628/j.cnki.2095-8188.2025.03.006

基于敏感气象特征因子筛选与PSO-SVM模型优化的新能源功率预测特性研究

Research on Power Prediction Characteristics of New Energy Based on Sensitive Meteorological Feature Factor Screening and PSO-SVM Model Optimization

巩伟峥1

作者信息

  • 1. 国家电网有限公司华东分部,上海 200120
  • 折叠

摘要

Abstract

With the continuous construction of new power systems,it is extremiy urgent to study the correlation characteristics between new energy power and meteorology.A new energy power rolling prediction algorithm based on sensitive meteorological factor feature screening and PSO-SVM model optimization is proposed.Firstly,based on the Pearson correlation coefficient and mutual information entropy,the correlation characteristics between meteorological factors and new energy power are analyzed.Based on the D-S evidence theory,the optimized combination of correlation indicators is calculated to screen sensitive meteorological feature factors.The particle swarm optimization(PSO)algorithm is used to globally optimize the parameters of the support vector machine(SVM)new energy power generation prediction model.Then,combined with massive new energy operation data,a rolling prediction model is established.Finally,through experimental verification and analysis,the results show that the proposed prediction model can effectively improve the accuracy of new energy generation prediction.

关键词

新能源/敏感气象特征因子/特征筛选/PSO-SVM模型/滚动预测

Key words

new energy/sensitive meteorological feature factor/feature screening/PSO-SVM model/rolling prediction

分类

动力与电气工程

引用本文复制引用

巩伟峥..基于敏感气象特征因子筛选与PSO-SVM模型优化的新能源功率预测特性研究[J].电器与能效管理技术,2025,(3):38-45,8.

电器与能效管理技术

2095-8188

访问量0
|
下载量0
段落导航相关论文