| 注册
首页|期刊导航|电力系统保护与控制|基于小波散射变换与IRCA-ICA-Res结合的电压源控制型静止同步补偿系统的故障诊断

基于小波散射变换与IRCA-ICA-Res结合的电压源控制型静止同步补偿系统的故障诊断

毕贵红 张靖超 赵四洪 陈仕龙 孔凡文 陈冬静

电力系统保护与控制2025,Vol.53Issue(8):144-158,15.
电力系统保护与控制2025,Vol.53Issue(8):144-158,15.DOI:10.19783/j.cnki.pspc.240926

基于小波散射变换与IRCA-ICA-Res结合的电压源控制型静止同步补偿系统的故障诊断

Fault diagnosis of voltage source controlled static synchronous compensator based on combination of wavelet scattering transform and IRCA-ICA-Res

毕贵红 1张靖超 1赵四洪 1陈仕龙 1孔凡文 1陈冬静1

作者信息

  • 1. 昆明理工大学电力工程学院,云南 昆明 650500
  • 折叠

摘要

Abstract

To fully utilize the time-frequency information contained in the IGBT open-circuit fault current signals of voltage source controlled static synchronous compensator(VSC-STATCOM)and improve the accuracy of fault diagnosis and identification,a novel WST-RCA-ICA-Res algorithm is proposed.This algorithm combines wavelet scattering transform(WST)with an improved residual channel attention(IRCA)module,and an improved coordinate attention(ICA)module with a residual neural network(Resnet).First,the Matlab/Simulink platform is used to simulate 22 types of faults in the VSC-STATCOM module under different operating conditions to obtain the fault sample set.Then,automatic robust feature extraction of fault signals is carried out using WST to construct a feature matrix containing time-frequency information.Finally,the IRCA-ICA-Res model is used to deeply extract,strengthen,and identify the feature matrix.Experimental results show that the proposed method has strong anti-noise performance and can accurately distinguish different IGBT fault types.

关键词

小波散射变换/注意力模块/神经网络/故障诊断/时频信息

Key words

wavelet scattering transform/attention module/neural network/fault diagnosis/time-frequency information

引用本文复制引用

毕贵红,张靖超,赵四洪,陈仕龙,孔凡文,陈冬静..基于小波散射变换与IRCA-ICA-Res结合的电压源控制型静止同步补偿系统的故障诊断[J].电力系统保护与控制,2025,53(8):144-158,15.

基金项目

This work is supported by the National Natural Science Foundation of China(No.51767012). 国家自然科学基金项目资助(51767012) (No.51767012)

电力系统保护与控制

OA北大核心

1674-3415

访问量0
|
下载量0
段落导航相关论文