| 注册
首页|期刊导航|井冈山大学学报(自然科学版)|自适应扩展卡尔曼滤波在车辆状态估计中的优化研究

自适应扩展卡尔曼滤波在车辆状态估计中的优化研究

张庭芳 凌勇 谢世坤 吴晓建 刘建胜

井冈山大学学报(自然科学版)2025,Vol.46Issue(2):89-96,8.
井冈山大学学报(自然科学版)2025,Vol.46Issue(2):89-96,8.DOI:10.3969/j.issn.1674-8085.2025.02.011

自适应扩展卡尔曼滤波在车辆状态估计中的优化研究

OPTIMIZATION OF ADAPTIVE EXTENDED KALMAN FILTER IN VEHICLE STATE ESTIMATION

张庭芳 1凌勇 1谢世坤 2吴晓建 1刘建胜1

作者信息

  • 1. 南昌大学先进制造学院,江西,南昌 330031
  • 2. 井冈山大学机电工程学院,江西,吉安 343009
  • 折叠

摘要

Abstract

In order to solve the problem that the system process noise and observation noise in the traditional extended Kalman filter(EKF)algorithm rely on artificial experience for parameter setting,an improved adaptive extended Kalman filter(AEKF)algorithm was proposed to estimate the vehicle state.Firstly,the nonlinear three-degree-of-freedom dynamics model and the H.B.Pacejke tire model were used as the estimation models.Then,the traditional system process noise and measurement noise covariance matrix were designed into an adaptive matrix that changed with the change of front wheel angle and vehicle speed to reduce the interference of external random noise.Finally,Carsim and Matlab/Simulink simulation software were used to simulate and verify the proposed algorithm under different working conditions,and compare it with the traditional EKF algorithm.The results show that compared with the traditional EKF algorithm,the improved AEKF algorithm can not only adapt to different working conditions and not be affected by external noise interference,but also improve the estimation accuracy.

关键词

车辆状态估计/EKF算法/自适应控制/车辆动力学模型/H.B.Pacejke轮胎模型

Key words

vehicle state estimation/EKF algorithm/adaptive control/vehicle dynamics model/H.B.Pacejke tire model

分类

交通工程

引用本文复制引用

张庭芳,凌勇,谢世坤,吴晓建,刘建胜..自适应扩展卡尔曼滤波在车辆状态估计中的优化研究[J].井冈山大学学报(自然科学版),2025,46(2):89-96,8.

基金项目

国家自然科学基金项目(52262054) (52262054)

井冈山大学学报(自然科学版)

1674-8085

访问量0
|
下载量0
段落导航相关论文