| 注册
首页|期刊导航|计算机与现代化|基于YOLO和PPO的无人机路径规划

基于YOLO和PPO的无人机路径规划

张慧玉 刘磊 闫冬梅 梁成庆

计算机与现代化Issue(4):50-55,62,7.
计算机与现代化Issue(4):50-55,62,7.DOI:10.3969/j.issn.1006-2475.2025.04.008

基于YOLO和PPO的无人机路径规划

UAV Path Planning Based on YOLO and PPO

张慧玉 1刘磊 1闫冬梅 2梁成庆3

作者信息

  • 1. 河海大学数学学院,江苏 南京 211100
  • 2. 南京邮电大学现代邮政学院,江苏 南京 210003
  • 3. 河海大学人工智能与自动化学院,江苏 常州 213200
  • 折叠

摘要

Abstract

This paper proposes an unmanned aerial vehicle path planning method based on deep reinforcement learning for com-plex and ever-changing three-dimensional unknown environments.This method optimizes strategies within a limited observation space to address the challenges posed by high complexity and uncertainty.Firstly,within a limited perceptual range,the YOLO network is used to extract obstacle information from the image information.Secondly,this paper designs hazard levels to address the issue of varying amounts of obstacle information at different times,and combines the extracted information from hazard levels with radar information as input to the intelligent agent.Finally,based on the proximal strategy optimization algorithm,an action selection strategy under state decomposition is designed to improve the effectiveness of drone actions.Through simulation evalua-tion in Gazebo,the experimental results show that compared to the proximal strategy optimization algorithm,the average reward per round has increased by 15.6 percentage points,and the average success rate has increased by 2.6 percentage points.

关键词

无人机/路径规划/深度强化学习/YOLOv4

Key words

unmanned aerial vehicle/path planning/deep reinforcement learning/YOLOv4

分类

航空航天

引用本文复制引用

张慧玉,刘磊,闫冬梅,梁成庆..基于YOLO和PPO的无人机路径规划[J].计算机与现代化,2025,(4):50-55,62,7.

基金项目

河北省自然科学基金资助项目(A2023209002) (A2023209002)

安徽省重点实验室基金资助项目(KLAHEI18018) (KLAHEI18018)

教育部重点实验室开放基金资助项目(Scip20240111) (Scip20240111)

计算机与现代化

1006-2475

访问量4
|
下载量0
段落导航相关论文